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Abstract

We consider the problem of dynamic cavity formation in isotropic compressible nonlinear
elastic media. For the equations of radial elasticity we construct self-similar weak solutions that
describe a cavity emanating from a state of uniform deformation. For dimensions d = 2, 3 we
show that cavity formation is necessarily associated with a unique precursor shock. We also
study the bifurcation diagram and do a detailed analysis of the singular asymptotics associated
to cavity initiation as a function of the cavity speed of the self-similar profiles. We show that
for stress free cavities the critical stretching associated with dynamically cavitating solutions
coincides with the critical stretching in the bifurcation diagram of equilibrium elasticity. Our
analysis treats both stress-free cavities and cavities with contents.
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1 Introduction

The motion of a continuous medium with nonlinear elastic response is described by the system of
partial differential equations

ytt − div
∂W

∂F
(∇y) = 0 (1.1)

where y : Rd × R+ → Rd stands for the motion, F = ∇y is the deformation gradient, and we have
employed the constitutive theory of hyperelasticity, S = ∂W

∂F (F ), that the Piola-Kirchhoff stress S
is given as the gradient of a stored energy function

W : Md×d
+ := {F ∈ Rd×d : det(F ) > 0 } −→ R .
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For isotropic elastic materials the stored energy reads W (F ) = Φ(v1, v2, . . . , vd) , where Φ is a

symmetric function of the eigenvalues v1, . . . , vd of the positive square root (F>F )
1
2 ; see [1, 22]. In

that case (1.1) admits solutions that are radially symmetric motions,

y(x, t) = w(|x|, t) x
|x|

, R = |x| ,

and are generated by solving for the amplitude w : R+×R+ → R+ the scalar second-order equation

wtt =
1

Rd−1

∂

∂R

(
Rd−1 ∂Φ

∂v1

(
wR,

w

R
, . . . ,

w

R

))
− 1

R
(d− 1)

∂Φ

∂v2

(
wR,

w

R
, . . . ,

w

R

)
. (1.2)

This equation admits the special solution wh(R, t) = λR corresponding to a homogeneous defor-
mation of stretching λ > 0. The question was posed [2] if discontinuous solutions of (1.2) can
be constructed and it has been tied to a possible explanation of the phenomenon of cavitation in
stretched rubbers [6, 7].

Ball [2] in a seminal paper proposed to use continuum mechanics for modeling cavitation and
used methods of the calculus of variations and bifurcation theory to construct cavitating solutions
for the equilibrium version of (1.2): There is a critical stretching λcr such that for λ < λcr the
homogeneous deformation is the only minimizer of the elastic stored energy; by contrast, for λ > λcr
there exist nontrivial equilibria corresponding to a (stress-free) cavity in the material with energy
less than the energy of the homogenous deformation [2]. We refer to [17, 20, 21, 13, 16, 14] and
references therein for developments concerning equilibrium or quasistatic cavitating solutions.

In an important development, K.A. Pericak-Spector and S. Spector [18, 19] use the self-similar
ansatz

w(R, t) = tϕ(Rt ) (1.3)

to construct a weak solution for the dynamic problem (1.2) that corresponds to a spherical cavity
emerging at time t = 0 from a homogeneously deformed state. The cavitating solution is constructed
in dimension d ≥ 3 for special classes of polyconvex energies [18, 19] and sufficiently large initial
stretching. Remarkably, the cavitating solution has lower mechanical energy than the associated
homogeneously deformed state from where it emerges [18], and thus provides a striking example
of nonuniqueness of entropy weak solutions (for polyconvex energies). The dynamic cavitation
problem is a little studied subject. Apart from [18, 19], there is an interesting almost explicit
example of a dynamic solution that oscillates constructed by Chou-Wang and Horgan [4] for the
dead load problem of an incompressible elastic material. Due to the incompressibility constraint
the response is markedly different from the compressible case: beyond a critical load a cavity opens
and then closes again, see [4]. The reader is referred to Choksi [3] for a discussion of the limit from
compressible to incompressible response in radial elasticity, and to Hilgers [10] for other examples of
non-uniqueness in multi-dimensional hyperbolic conservation laws due to radial point singularities.

The objective of the present work is to complement [18, 19] by establishing various further
properties of weak solutions describing dynamic cavitation. First, we prove that cavity formation
is always associated with a precursor shock, namely it is not possible to construct a cavitating
solution that connects ”smoothly” to a uniformly deformed state. Second, we study the bifurcation
diagram for dynamically cavitating solution and provide a formula that determines the critical
stretch required for opening a cavity. The critical stretch turns out (for traction free cavities) to
be the same as that predicted from the equilibrium cavitation analysis of Ball [2]. In a companion
paper [8] we reassess the issue of nonuniqueness of weak solutions, and show that local averaging of
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the cavitating weak solution contributes a surface energy when opening a cavity that renders the
uniform deformation the energetically preferred solution, see [8] for details and comments on the
ramifications.

We now provide an outline of the technical contents of the article: Throughout we work with
stored energies of the form

Φ(v1, v2, ..., vd) =

d∑
i=1

g(vi) + h(v1v2 . . . vd) (H0)

where g(x) ∈ C3[0,∞), h(x) ∈ C3(0,∞) satisfy

g′′(x) > 0, h′′(x) > 0 , lim
x→∞

h(x) = +∞ (H1)

g′′′(x) ≤ 0, h′′′(x) < 0 . (H2)

Hypothesis (H1) refers to polyconvexity [2], while (H2) indicates elasticity with softening. The
reader is referred to Appendix 7.2 where properties of isotropic stored energies are reviewed.

Following [18, 19], we introduce the self-similar ansatz (1.3) and the problem of cavity formation
becomes to find solutions of the problem(

s2 − ∂2Φ

∂v2
1

)
ϕ̈ =

d− 1

s

[
(ϕ̇− ϕ

s
)
∂2Φ

∂v1∂v2
+
∂Φ

∂v1
− ∂Φ

∂v2

]
(1.4)

ϕ0 := lim
s→0+

ϕ(s) > 0 (1.5)

and to check whether such solutions can be connected to a uniformly deformed state, namely

ϕ(s) = λs for s > σ. (1.6)

Here, ϕ0 > 0 represents the speed of the cavity surface, λ > 0 the stretching of the (initially)
uniform deformation and σ is the shock speed. We remark that (1.4) with (1.6) admit the special
solution ϕ̄ = λs corresponding to a homogenous deformation yh(x) = λx; therefore, according to
this scenario, cavity formation is associated to nonuniqueness for the initial value problem of the
radial elasticity equation (1.2).

To make the problem (1.4)-(1.5) determinate it is necessary to specify the value of the radial
component of the Cauchy stress Trad(0) at the cavity surface. Two types of boundary conditions
are pursued (see Section 3.1) corresponding to stress-free cavities or to a cavity with content:

either Trad(0) = 0 ⇔ lim
s→0

ϕ̇
(ϕ
s

)d−1
= h′−1(0) := H (stress-free cavity)

or Trad(0) = G(ϕ0) ⇔ lim
s→0

ϕ̇
(ϕ
s

)d−1
= h′−1(G(ϕ0)) (cavity with content) .

(1.7)

Under the growth condition |g′(x)| ≤ C|x|d−2 (see (H3) in section 3.1) and for dimension d ≥ 2,
the problem (1.4), (1.5) and (1.7) is desingularized at the origin and a solution ϕ(s) is constructed
(see Theorem 3.3). The question arises whether this cavitating solution can be connected to the
uniform deformation (1.6) through a shock (or through a sonic singularity). This leads to studying
the algebraic equation

σ =

√
∂Φ
∂v1

(ϕ̇, ϕs , ...,
ϕ
s )− ∂Φ

∂v1
(ϕs ,

ϕ
s , ...,

ϕ
s )

ϕ̇− ϕ
s

∣∣∣∣∣∣
s=σ

(1.8)

3



which manifests the Rankine-Hugoniot jump condition. In Theorems 3.4 and 4.1 we show there
exists a unique σ where the connection can be effected, and that the connection either happens
through a Lax shock or through a sonic singularity (i.e. a point where the coefficient (s2 −Φ11) in
(1.4) vanishes). Then, in Theorem 4.2, we restrict to dimensions d = 2, 3 and exclude the possibility
of a connection through a sonic singularity. Our analysis is inspired and extends the results of
[18, 19] where cavitating solutions are constructed for sufficiently large stretchings λ. In particular,
we show that, for dimensions d = 2, 3, it is impossible to connect a cavitating solution smoothly to
a uniformly deformed state and thus any cavitating solution is associated with a precursor shock.

The next objective is to study the bifurcation diagram of the cavitating weak solution and deter-
mine the critical stretching for dynamic cavitation. The bifurcation diagram is visualized as follows:

The boundary condition (1.7) is expressed for the specific volume v(s) := detF = ϕ̇
(
ϕ(s)
s

)d−1
in

the general form v(0) = V (ϕ0). Given the cavity speed ϕ0 > 0, let (ϕ, v)(s ;ϕ0, V (ϕ0)) be the
cavitating solution (constructed in Section 3.1) emanating from data ϕ0, v0 = V (ϕ0). Denoting by
σ = σ(ϕ0, V (ϕ0)) the connection point, the associated stretching defines the map

ϕ0 7−→ Λ(ϕ0, V (ϕ0)) where Λ(ϕ0, V (ϕ0)) :=
ϕ
(
σ ;ϕ0, V (ϕ0)

)
σ

, (1.9)

which is precisely the dynamic bifurcation diagram (see Fig. 2 for a numerical computation of this
map). The limit limϕ0→0+ Λ(ϕ0, V (ϕ0)) will determine the critical stretching. The technique of
recovering the bifurcation point λcr by computing the cavitating solution and sending the inner
radius of the cavity to zero is espoused in [15], where the authors use it to devise a numerical
scheme for computing λcr in equilibrium elasticity.

To understand the limiting behavior of cavitating solutions as ϕ0 → 0, we introduce the rescaling

ψ(ξ;ϕ0, V (ϕ0)) :=
ϕ
(
ϕ0ξ ;ϕ0, V (ϕ0)

)
ϕ0

, δ(ξ;ϕ0, V (ϕ0)) := v
(
ϕ0ξ ;ϕ0, V (ϕ0)

)
(1.10)

which captures the inner asymptotics of the cavitating solution (ϕ, v) to (1.4)-(1.7). Rescalings have
been useful in the study of cavitation for equilibrium elasticity [2] and will play an instrumental
role in determining the critical stretching for dynamic cavitation.

It is proved in Proposition 5.6 that the rescaled solutions converge to a limiting profile,

(ψ, δ)(ξ ;ϕ0, V (ϕ0)) → (ψ0, δ0)(ξ ;V (0)) , as ϕ0 → 0+ ,

uniformly on compact subsets of [0,∞).

The limiting profile (ψ0(ξ), δ0(ξ)), where δ0 = ψ′0
(ψ0

ξ

)d−1
, is defined on [0,∞) and solves the

initial value problem

−∂
2Φ

∂v2
1

(ψ′0,
ψ0

ξ , ...,
ψ0

ξ )ψ′′0 =
d− 1

ξ

(
ψ′0 −

ψ0

ξ

)[ ∂2Φ

∂v1∂v2
+

∂Φ
∂v1
− ∂Φ

∂v2

ψ′0 −
ψ0

ξ

]
(ψ′0,

ψ0

ξ , ...,
ψ0

ξ ) ,

ψ0(0) = 1 ,

δ0(0) = V (0) .

(1.11)

The solvability of (1.11) and properties of its solutions are discussed in Proposition 5.5, where it is
in particular shown that the (inner) solution is associated with a critical stretching at infinity

Λ0(V (0)) := lim
ξ→∞

ψ0(ξ;V (0))

ξ
. (1.12)
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Equation (1.11)1 is precisely the equation describing cavitating solutions in equilibrium radial
elasticity, suggesting that the critical stretch for dynamic cavitation and equilibrium cavitation
might conceivably coincide. The critical stretch λcr for cavitation in equilibrium radial elasticity is
studied in [2, Section 7.5] where various representation formulas for λcr are established. In section
5.3.2 we pursue this analogy, we show that for a stress-free cavity Λ0(H) = λcr, and establish
representation formulas for the critical stretch and corresponding lower bounds.

Finally, in Theorem 5.7, we study the behavior of the cavitating solution ϕ(·;ϕ0, V (ϕ0)) and
the associated stretch (1.9) as the cavity speed ϕ0 → 0. We establish that

lim
ϕ0→0+

Λ(ϕ0, V (ϕ0)) = Λ0(V (0)) ,

where Λ0(V (0)) is given by (1.12), that the speed and the strength of the precursor shock satisfy

lim
ϕ0→0+

σ(ϕ0, V (ϕ0)) =

√
∂2Φ

∂v2
1

(
Λ0(V (0)), . . . ,Λ0(V (0))

)
lim

ϕ0→0+

[ϕ
s
− ϕ̇

]
(σ(ϕ0, V (ϕ0))) = 0 ,

and that
ϕ
(
s;ϕ0, V (ϕ0)

)
→ Λ0(V (0))s , as ϕ0 → 0+.

Our analysis proves that the critical stretching for equilibrium and dynamic cavitation coincide.
The structure of the article is as follows: In Section 2 we introduce the equations of radial

elasticity for isotropic elastic materials. In Section 3 we derive the equations for self-similar solutions
of radial elasticity, describe various special solutions, and present the problem of cavitation. The
analysis of Section 3 follows the ideas and extends the analysis of [18, 19] to a more general class
of (polyconvex) stored energies and to boundary conditions of cavities with content. Section 4
and Section 5 contain the main new results. In Section 4 we establish various properties of weak
solutions describing cavity formation from a homogeneously deformed state. In Section 5 we study
the bifurcation curves associated with cavitating weak solutions and establish the properties of the
critical stretching and its relation to the critical stretching predicted by the equilibrium elasticity
equation. The Appendix lists some properties of radial deformations, and collects information on
stored energies that is widely used in various places of the text.

2 The equations of radial elasticity

The stored energy of an isotropic elastic material has to satisfy the symmetry requirements

frame indifference W (QF ) = W (F ), ∀ Q ∈ SO(d)

isotropy W (F ) = W (FQ), ∀ Q ∈ SO(d).

where Q is any proper rotation. These requirements are equivalent to

W (F ) = Φ(v1, v2, . . . , vd)

where Φ(v1, v2, . . . , vd) : Rd++ → R is a symmetric function of its arguments and v1, . . . , vd are the

eigenvalues of (F>F )
1
2 called principal stretches [1, 2, 22].
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For isotropic materials the system of elasticity (1.1) admits radial solutions of the form

y(x, t) = w(R, t)
x

R
with R = |x|. (2.1)

The deformation gradient is computed by

∇y = wR
x⊗ x
R2

+
w

R

(
I− x⊗ x

R2

)
(2.2)

and has principal stretches v1 = wR, v2 = · · · = vd = w
R . Using results on spectral representations

of functions of matrices one computes the first Piola-Kirchhoff stress [2, p.564],

S(∇y) = Φ1

(
wR,

w

R
, ...,

w

R

) x⊗ x
R2

+ Φ2

(
wR,

w

R
, ...,

w

R

) (
I − x⊗ x

R2

)
, (2.3)

where we used the notation Φ1 ≡ ∂Φ
∂v1

, Φ2 ≡ ∂Φ
∂v2

and the symmetry property (7.8). (The reader is
referred to Appendix 7.2 for properties of the stored energies Φ and details on the notation used
throughout). Using the above formulas one computes that the amplitude w of the radial motion
(2.1) is generated by solving the second-order partial differential equation

wtt =
1

Rd−1

∂

∂R

(
Rd−1 ∂Φ

∂v1

(
wR,

w

R
, ...,

w

R

))
− d− 1

R

∂Φ

∂v2

(
wR,

w

R
, ...,

w

R

)
. (2.4)

In order for solutions to be interpreted as elastic motions one needs to impose the requirement

detF = wR
(w
R

)d−1
> 0

on solutions of (2.4), which for radial motions suffices to exclude interpenetration of matter.
Equation (2.4) can also be derived by considering the action functional for radial, isotropic

elastic materials, defined as the difference between kinetic and potential energy

I[w] :=

∫ T

0

∫ 1

0
Rd−1

(
1
2w

2
t − Φ(wR,

w

R
, ...,

w

R
)
)
dRdt.

Critical points of the functional I[w] are obtained by computing the first variation and setting it
to zero,

d

dδ

∣∣∣
δ=0

I[w + δψ] = 0,

which gives the weak form of (2.4),∫ T

0

∫ 1

0
Rd−1

(
wtψt − Φ1

(
wR,

w

R
, ...,

w

R

)
ψR −

d− 1

R
Φ2

(
wR,

w

R
, ...,

w

R

)
ψ
)
dRdt = 0 .

Finally, (2.4) can be expressed as a first order system by introducing the variables

a = wR , b =
w

R
, v = wt (2.5)
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where u is the (longitudinal) strain, b is the transverse strain, and v is the velocity in the radial
direction. It is expressed as the equivalent first order system

at = vR

vt = ∂R

(
Φ1(a, b, ..., b)

)
+
d− 1

R

(
Φ1(a, b, ..., b)− Φ2(a, b, ..., b)

)
bt =

v

R
.

(2.6)

subject to the involution (bR)R = a. This is a system of balance laws with geometric singularity
at R = 0. Under the hypothesis Φ11 > 0 the system (2.6) is hyperbolic (see [5, Def 3.1.1] for the
usual definition). The characteristic speeds λ± = ±

√
Φ11 are genuinely nonlinear, while λ0 = 0 is

linearly degenerate, see [12, 5]. The eigenvalues and the corresponding right and left eigenvectors
of the flux of the system (2.6) are given by

λ+ =
√

Φ11 , r+ =
(
1,
√

Φ11, 0
)>
, l+ =

(√
Φ11, 1, (d− 1)Φ12/

√
Φ11

)
λ− = −

√
Φ11 , r− =

(
1, −

√
Φ11, 0

)>
, l− =

(√
Φ11, −1, (d− 1)Φ12/

√
Φ11

)
λ0 = 0, r0 =

(
(d− 1)Φ12 , 0, −Φ11

)>
, l0 =

(
0, 0, 1

)
.

3 The cavitating solution of Pericak-Spector and Spector

We are interested in (2.4) subject to the initial-boundary conditions{
w(R, 0) = λR

w(R, t) = λR , for |R| > σ̄t .
(3.1)

The symmetry of Φ implies that Φ1(λ, λ) = Φ2(λ, λ) and the homogeneous deformation wh(R, t) =
λR is a special equilibrium solution of (2.4) associated to the stretching λ > 0. To obtain additional
solutions, it was suggested in [18] to exploit the invariance of (2.4), (3.1) under the family of the
scaling transformations wλ(R, t) = λw(λR, λt) and to seek solutions in self-similar form

w(R, t) = tϕ
(R
t

)
. (3.2)

Introducing the ansatz (3.2) to (2.4), and using the notations s = R
t and ˙ = d

ds , it turns out that
ϕ(s) satisfies the singular second-order ordinary differential equation

(s2 − Φ11)ϕ̈ =
d− 1

s
(ϕ̇− ϕ

s
)
[
Φ12 +

Φ1 − Φ2

ϕ̇− ϕ
s

]
. (3.3)

Henceforth, we will be using the short hand notations

Φi

(
ϕ̇,
ϕ

s

)
≡ ∂Φ

∂vi

(
ϕ̇,
ϕ

s
, ...,

ϕ

s

)
Φij

(
ϕ̇,
ϕ

s

)
≡ ∂2Φ

∂vi∂vj

(
ϕ̇,
ϕ

s
, ...,

ϕ

s

)
and so on for higher derivatives. We refer to Appendix 7.2 for details, and caution the reader that the
notation together with the symmetry properties (7.8), (7.9) has implications on the differentiation
of such formulas.
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Moreover, we introduce the variables a, b defined in analogy to (2.5) by

a = ϕ̇ , b =
ϕ

s

and rewrite (3.3) in the form of the first order system
(
s2 − Φ11(a, b)

)
ȧ =

(d− 1)

s
(a− b)P (a, b)

ḃ =
1

s
(a− b)

(3.4)

where

P (a, b) =

{
Φ12(a, b) + Φ1(a,b)−Φ2(a,b)

a−b , a < b

Φ11(b, b) , a = b
(3.5)

is a continuous function on
{

(a, b) ∈ R2 : 0 < a ≤ b
}

.

In analogy to the standard theory [12] of the Riemann problem for conservation laws, it is
instructive to classify elementary solutions of (3.4). There are three classes of special solutions:

(a) Uniformly deformed states. A special class of solutions of (3.4) are the constant states
a = b = constant, which yield a uniform deformation wh(R) = λR for the original system.

(b) Continuous solutions. The balance of the convective and the production terms in (3.4)
leads to a class of solutions that are continuous (which are not present in homogeneous conservation
laws and are of different origin than the rarefaction waves). These will be the main object of
study here. There are two features of (3.4) that need to be addressed by the analysis: (i) the
geometric singularity at s = 0, and (ii) the difficulty emerging from a potential free boundary at
the sonic curve s = ±

√
Φ11(a, b). It is well known that the resolution of the Riemann problem for

multi-dimensional hyperbolic systems leads to systems that change type across sonic-curves in the
self-similar variables. The analog of this phenomenon for radial solutions leads to singular ordinary
differential equations across the sonic lines.

(c) Shocks. One may express the system (3.4) in the equivalent form

d

ds

(
s2a− Φ1(a, b)

)
= 2sa+

d− 1

s

(
Φ1(a, b)− Φ2(a, b)

)
db

ds
=

1

s
(a− b).

(3.6)

Two smooth branches of solutions to (3.6) might be connected through a jump discontinuity at
s = σ provided that the Rankine-Hugoniot jump conditions

b− = b+ =: b , σ2 =
Φ1(a+, b)− Φ2(a−, b)

a+ − a−
(3.7)

are satisfied, where

(a−, b−) = lim
s→σ−

(a, b)(s) , (a+, b+) = lim
s→σ+

(a, b)(s).
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According to the Lax shock admissibility criterion (see [12] where the criterion was introduced
or [5, Secs 8.3, 9.4]), a shock of the 2nd characteristic family will be admissible if

√
Φ11(a+, b) < σ+ =

√
Φ1(a+, b)− Φ2(a−, b)

a+ − a−
<
√

Φ11(a−, b) . (3.8)

In particular,

if Φ111 > 0, then (3.8) is equivalent to a+ < a−

if Φ111 < 0, then (3.8) is equivalent to a+ > a− .

Similarly, shocks of the 1st characteristic family are admissible via the Lax criterion if

−
√

Φ11(a+, b) < σ− = −

√
Φ1(a+, b)− Φ2(a−, b)

a+ − a−
< −

√
Φ11(a−, b) . (3.9)

in which case

if Φ111 > 0, then (3.9) is equivalent to a− < a+

if Φ111 < 0, then (3.9) is equivalent to a− > a+ .

For radial motions shocks of the 2nd characteristic family are outgoing while shocks of the 1st

characteristic family are incoming to the origin. For the cavitation problem, it is natural to restrict
to outgoing shocks and the kinematics of the cavity dictates that a− < a+. Therefore, we impose
the condition Φ111 < 0 which corresponds to softening elastic response. Softening refers to the
property that the elastic modulus decreases with an increase of the longitudinal strain and plays
an important role in cavitation analysis.

3.1 The cavitating solution

We next consider the problem of cavitation and discuss the continuous type of solutions in this
context. We employ a constitutive relation of polyconvex class

Φ(v1, v2, ..., vd) =
d∑
i=1

g(vi) + h(v1v2 . . . vd) , (H0)

where g ∈ C3[0,∞), h ∈ C3(0,∞) satisfy (H1) and (H2) and thus Φ11 > 0 and Φ111 < 0. Hypothesis
(H1) alludes to polyconvexity of the stored energy while Hypothesis (H2) manifests softening elastic
response.

A stored energy of the form (H0) with g(x) = 1
2x

2 was used in [18] to establish cavitation for
d ≥ 3. The generalization presented in (H0) is necessary in order to handle the case of d = 2, as the
hypothesis of quadratic growth is too strong to allow for a cavity when d = 2. The ideas presented
in this section closely follow the discussion of [18, 19], nevertheless they are presented here first
for the reader’s convenience but also to set up the landscape for the forthcoming analysis in the
following sections.
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The differential equation (3.3) is expressed as

Q(ϕ̇, ϕs , s)ϕ̈ =
(d− 1)

s

(
ϕ̇− ϕ

s

)
P (ϕ̇, ϕs ) (3.10)

or equivalently 
Q(a, b, s) ȧ =

(d− 1)

s
(a− b)P (a, b)

ḃ =
1

s
(a− b)

(3.11)

where

Q(a, b, s) = s2 − Φ11(a, b)
(H0)
= s2 −

[
g′′(a) + b2d−2h′′

(
abd−1)

]
. (3.12)

Desingularization at the origin. We next transform (3.10) into a system for the quantities

ϕ(s), v(s) = ϕ̇
(ϕ
s

)d−1
with data ϕ(0) = ϕ0 > 0, v(0) = v0 > 0 , (3.13)

henceforth restricting to stored energies of class (H0). A lengthy but straightforward calculation
shows that (ϕ, v) satisfies the initial-value problem

ϕ̇ = v
( s
ϕ

)d−1

v̇ =

(
d− 1

ϕ

)( s
ϕ

)2d−3
v
(
v
(
s
ϕ

)d − 1
)[
s2 − g′′(v( sϕ)d−1)

]
{
−h′′(v) +

[
s2 − g′′(v( sϕ)d−1)

](
s
ϕ

)2d−2
}

+

(
d− 1

ϕ

) (
s
ϕ

)d−2
[
g′(v( sϕ)d−1)− g′(ϕs )

]
{
−h′′(v) +

[
s2 − g′′(v( sϕ)d−1)

](
s
ϕ

)2d−2
}

ϕ(0) = ϕ0 > 0

v(0) = v0 > 0.

(3.14)

In view of (H1) and the assumption d ≥ 2, the only term on the right-hand side of (3.14) that
might be singular at s = 0 is the term g′(ϕs )( sϕ)d−2. This motivates to impose the growth condition

lim
x→∞

(
g′(x)

xd−2

)
= γ ≥ 0 . (H3)

Doing that the emerging system is not singular and one may apply the standard existence theory
for ordinary differential equations to obtain

Lemma 3.1. Suppose d ≥ 2 and hypotheses (H0), (H1), and (H3) hold. Then there exists a unique
solution of the system (3.14) defined on a maximal interval of existence.

Proof. Under hypotheses (H0)-(H1) we have g′′(0) > 0, h′′(v0) > 0. Moreover, by (H3), the limit
limx→∞(g′(x)x2−d) exists and is finite and the right hand side of (3.14) is continuous for s ∈ [0, 1]
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(up to the boundary s = 0). A careful review of the various terms indicates that the initial value
problem (3.14) is expressed as

ϕ̇ = A(s, v, ϕ)

v̇ = B(s, v, ϕ) + C(s, v, ϕ)H(s, ϕ)

ϕ(0) = ϕ0 > 0

v(0) = v0 > 0.

(3.15)

where A,B,C : [0, 1]×N (v0, ϕ0)→ R are C1 functions on [0, 1]×N (v0, ϕ0) withN a neighbourhood
of (v0, ϕ0). The term

H(s, ϕ) =

{(
s
ϕ

)d−2
g′
(ϕ
s

)
s > 0

γ s = 0
(3.16)

carries the singular behaviour in s and by (H3) it is continuous on [0, 1]×N (v0, ϕ0).
Moreover, the assumptions g′′ > 0, g′′′ ≤ 0 imply

0 ≤ g′′(x)x ≤
∫ 1

0
g′(sx)xds = g′(x)− g′(0) , x > 0

and, using once again (H3), it automatically implies

0 ≤ lim sup
x→∞

(
g′′(x)

xd−3

)
≤ γ0 =

{
γ − g′(0) , d = 2

γ, d ≥ 3 .
(3.17)

Now observe that ∣∣∣∂H
∂ϕ

(s, ϕ)
∣∣∣ =

1

ϕ

∣∣∣g′′(ϕs )( sϕ)d−3 − (d− 2)g′
(ϕ
s

)(
s
ϕ

)d−2
∣∣∣ ≤ C

for s ∈ [0, 1] and ϕ ∈ N (ϕ0) a suitable neighbourhood of ϕ0 > 0. The standard existence and
uniqueness theory for systems of ordinary differential equations then provides the result.

Remark 3.2. The sign requirements g′′ > 0, g′′′ ≤ 0 in hypotheses (H1), (H2) place the restriction

that lim supx→∞ |
g′(x)
x | <∞. Also, if d = 2 then (H3) enforces that limx→∞ |g′(x)| = γ <∞. This

is consistent with (H1)-(H2).

Boundary data at the cavity surface. A natural assumption motivated from mechanical
considerations is to impose that the radial Cauchy stress vanishes at the cavity surface. Using the
standard formula relating the Cauchy stress tensor T to the Piola-Kirchhoff stress S (e.g. [2, 1])

T (F ) =
1

detF
S(F )F>

and (2.3) it follows that for ∇y given by (2.2) we have

T (∇y) =
1

wR
(
w
R

)d−1

[
Φ1wR

x⊗ x
R2

+ Φ2
w

R

(
I− x⊗ x

R2

)]
.
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The radial component of the Cauchy stress is given by

Trad(s) :=
x

R
· T (∇y)

x

R

(H0)
=
( s
ϕ

)d−1
[
g′(ϕ̇(s)) +

(ϕ
s

)d−1
h′(v(s))

]
.

For the solution ϕ, v of (3.14) it is easy to see that

ϕ

s
∼ ϕ0

s
, ϕ̇(s) ∼ v0

( s

ϕ0

)d−1
as s→ 0+

and therefore
lim
s→0+

Trad(s) = h′(v0) . (3.18)

This motivates to impose the growth condition

h′(x)→ −∞ as x→ 0+ , h′(x)→ +∞ as x→ +∞ . (H4)

Under (H1), (H4) the inverse h′−1 is a well-defined function on R and the boundary condition
becomes

Trad(0) = 0 is equivalent to v0 = H := h′−1(0) . (3.19)

One may consider more general boundary conditions that are referred in [18] as cavities with
content and require that Trad(0) = G(ϕ0), where G is some prescribed function. Such conditions
could model at a phenomenological level the effect of remnant plasticity inside the cavity, and
are postulated in analogy to the form of kinetic relations in the motion of phase boundaries. For
physical reasons the remnant plasticity at the cavity should correspond to tensile forces, which
dictates that G(ϕ0) > 0. One checks that

Trad(0) = G(ϕ0) is equivalent to v0 = h′−1(G(ϕ0)). (3.20)

It is not entirely clear if such an assumption is mechanically justified, nevertheless it can be analyzed
by the mathematical theory at no additional effort. Note that both (3.19) and (3.20) decrease the
freedom of the data by one degree. For the bifurcation analysis in section 5 we assume that G(ϕ0)
is continuous at ϕ0 = 0. This implies that V (x) := h′−1(G(x)) is also continuous at x = 0.

A class of C2 self-similar solutions. We now construct a class of C2 self-similar solutions to
(3.10). Proceeding along the lines of [18, Thm 5.1] we have:

Theorem 3.3. Assume that d ≥ 2, Φ satisfies (H0)-(H3) and let ϕ0 > 0, v0 > 0. Then, there
exists a unique solution ϕ of (3.10) satisfying the initial data (3.13) and defined on a maximal
interval of existence [0, T ), with T <∞. The solution has the following properties:

(i) (ϕ, v) solves (3.14) and there holds

ϕ(s)

s
∼ ϕ0

s
and ϕ̇(s) ∼ v0

( s

ϕ0

)d−1
as s→ 0+. (3.21)

(ii) ϕ̇, ϕ
s , (ϕ̇− ϕ

s ) are strictly monotonic and satisfy

ϕ̈(s) > 0,
d

ds

(ϕ
s

)
< 0,

d

ds

(
ϕ̇− ϕ

s

)
> 0 on 0 < s < T , (3.22)

0 < ϕ̇(s) < ϕ̇(t) <
ϕ(t)

t
<
ϕ(s)

s
for 0 < s < t < T , (3.23)
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and

Q(ϕ̇, ϕs , s) < 0, ϕ̇(s)− ϕ(s)

s
< 0 for 0 < s < T. (3.24)

(iii) The following limits exist

lim
s→T−

Q(ϕ̇, ϕs , s) = 0, lim
s→T−

(
ϕ̇− ϕ

s

)
= c0 ≤ 0 (3.25)

(but it is not known if c0 < 0).

Proof. By Lemma 3.1 there exists a unique local solution (ϕ, v) of (3.14) with ϕ(0) = ϕ0 > 0,
v(0) = v0 > 0 which of course satisfies (i). Next, we observe that (a, b) = (ϕ̇, ϕs ) solves the system
(3.11) where, in view of (3.12) and (3.21), we have Q(0) < 0. This together with (3.21) implies
that Q(s) < 0 and 0 < a(s) < b(s) for s ∈ (0, ε] for sufficiently small ε > 0. We now check that Φ
satisfying (H0)-(H3) has the properties

Φ11(a, b) > 0 , Φ111(a, b) < 0 , P (a, b) > 0 (3.26)

which together with (3.11) imply ȧ > 0, ḃ < 0 and

d

ds
(a− b) =

1

sQ
(a− b)

[
(d− 1)P −Q

]
> 0.

Thus, (3.22), (3.23) and (3.24) must hold for s ∈ (0, ε]. The solution can be continued in that
manner for s > ε so long as Q(s) < 0, 0 < a(s) <∞ , and 0 < b(s) <∞ on a maximal interval of
existence [0, T ), with T ≤ ∞. It is also clear that the solution cannot hit the diagonal a = b unless
Q = 0. On the interval (ε, T ) we clearly have

a(ε) < a(s) < b(s) < b(ε) , s ∈ (ε, T ) , (3.27)

that is a(s) and b(s) stay away from zero and in a bounded range as s increases. Then (3.27) and
the fact that Q(s) = s2 − Φ11(a, b) < 0, s ∈ (0, T ) imply that T <∞ and

lim sup
s→T−

Q(a(s), b(s), s) = 0. (3.28)

Also, in view of (3.22) and (3.23) we have a− b→ c0 ≤ 0 as s→ T−.
A computation shows that

1

2

d

ds
Q2 = 2sQ− d− 1

s
(a− b)

[
P (a, b)Φ111(a, b) + Φ112(a, b)Q

]
Using (3.12) and the bounds (3.27) we see that for s ∈ (ε, T )∣∣∣ d

ds
Q2
∣∣∣ ≤ C s ∈ (ε, T ) . (3.29)

Now if T <∞ and
lim inf
s→T−

Q(a(s), b(s), s) < lim sup
s→T−

Q(a(s), b(s), s) = 0

then (3.29) would be violated. We thus deduce that Q(s)→ 0 as s→ T−.
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3.2 Connection to a uniformly deformed state.

Next, the smooth cavitating solution (ϕ̇, ϕs ) of (3.11) constructed in Theorem 3.3 will be connected
to a uniformly deformed state through an outgoing shock of speed σ > 0. At the connection, the
Rankine-Hugoniot relations (3.7) must be satisfied and they imply that

ϕ−(σ) = ϕ+(σ), σ2
(
ϕ̇+(σ)− ϕ̇−(σ)

)
= Φ1(ϕ̇+,

ϕ+

σ )− Φ1(ϕ̇−,
ϕ−
σ )

where ϕ−(s) ≡ ϕ(s) is the given cavitating solution on the left, and ϕ+(s) = λs, for some λ, is the
uniformly deformed state on the right.

Thus to connect the cavitating solution ϕ(s) to a uniformly deformed state through a shock
wave it suffices to define the function

p(s) :=
Φ1(ϕ̇, ϕs )− Φ1(ϕs ,

ϕ
s )

ϕ̇− ϕ
s

− s2 (3.30)

and to identify a zero of p(s) for s ∈ (0, T ) the maximal interval of existence of ϕ. It is expedient
to view the right hand side of (3.30) as a function of the principal stretches,

R(a, b, s) : =

{
Φ1(a,b)−Φ1(b,b)

a−b − s2, a < b

Φ11(b, b)− s2, a = b ,
(3.31)

and to observe that R(a, b, s) is continuous on
{

(a, b) ∈ R2 : 0 < a ≤ b
}
× R.

By (3.23) and (3.25), the solutions (v, ϕ) in Theorem 3.3 have well-defined limits

0 < A := lim
s→T−

ϕ̇(s) ≤ B := lim
s→T−

(ϕ
s

)
<∞ . (3.32)

Theorem 3.4 (existence of connection point). Assume d ≥ 2 and Φ satisfies (H0)-(H4). Let
(v, ϕ) be the solution to (3.14) constructed in Theorem 3.3 and (a, b) = (ϕ̇, ϕs ). Let A,B be the
limits defined in (3.32). Then,

(i) if A = B then (a, b) is connected continuously at σ = T to the state (B,B) associated with
the uniform deformation ϕ+(s) = Bs ;

(ii) if A < B then (a, b) is connected to a uniformly deformed state through a Lax-admissible
shock at some intermediate point σ ∈ (0, T ).

Proof. Recalling (3.31), we set for s ∈ (0, T )

p(s) := R(ϕ̇, ϕs , s)

=

(
g′(ϕ̇)− g′(ϕs )

ϕ̇− ϕ
s

)
+
(ϕ
s

)2d−2
(
h′(ϕ̇(ϕs )d−1)− h′((ϕs )d)

ϕ̇(ϕs )d−1 − (ϕs )d

)
− s2 .

(3.33)

We observe that by (H1), (H4), (3.21), (3.23)-(3.25), (3.32) and (3.33):

(1) As s→ 0+

p(s) ∼
( s
ϕ

)
g′(ϕs ) +

(ϕ
s

)d−2
h′((ϕs )d) → +∞ . (3.34)
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(2) As s→ T−

p(s) → R(A,B, T ) (3.35)

Q(s) → T 2 − Φ11(A,B) = 0 . (3.36)

Now, denote p(T ) := lims→T− p(s) = R(A,B, T ). If A = B, then by (3.36)

p(T ) = R(B,B, T ) = Φ11(B,B)− T 2 = 0 .

On the other hand, if A < B, then (H2) implies Φ111 < 0 and by (3.35), (3.36)

p(T ) = R(A,B, T ) =
Φ1(A,B)− Φ1(B,B)

A−B
− T 2

= Φ11(C∗, B)− Φ11(A,B) < 0

for some C∗ ∈ (A,B). Then (3.34) implies that there exists σ ∈ (0, T ) such that p(σ) = 0.

4 Necessity and uniqueness of the precursor shock

In this section we show that there is uniqueness within the method of construction of cavitating
solutions and that (when d = 2, 3) the connection must happen through a Lax-admissible shock.

We first prove that there exists at most one point in (0, T ] where p(s) (defined in (3.33)) vanishes
and thus a unique connection (of the cavitating solution with a uniform deformation) occurs.

Theorem 4.1. Let d ≥ 2 and Φ satisfy (H0)-(H2). In Theorem 3.4 there exists a unique σ ∈ (0, T ]
satisfying p(σ) = 0.

(i) If σ < T then the connection happens via a Lax admissible shock.

(ii) If σ = T then the connection occurs via a sonic singularity at which A = B.

Proof. Consider p(s) for s ∈ (0, T ). Multiply (3.30) by (a− b) and then differentiate to get

ṗ(a− b) + p(ȧ− ḃ) = −
(
s2 − Φ11(a, b)

)
ȧ

+ (d− 1)
(
Φ12(a, b)− Φ12(b, b)

)
ḃ

+
(
s2 − Φ11(b, b)

)
ḃ− 2s(a− b) .

Recall that (
s2 − Φ11(a, b)

)
ȧ = (d− 1)P (a, b)ḃ, ḃ =

1

s
(a− b), s ∈ (0, T ) (4.1)

and hence

ṗ(a− b) + p(ȧ− ḃ)

= −(d− 1)
[
P (a, b)− Φ12(a, b) + Φ12(b, b)

]
ḃ−

(
s2 + Φ11(b, b)

)
ḃ .
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Then, divide the result by (a− b) < 0 and use (4.1) to conclude for s ∈ (0, T )

ṗ+ p

(
ȧ− ḃ
a− b

)
=

= −(d− 1)

s

[
Φ1(a, b)− Φ2(a, b)

a− b
+ Φ12(b, b)

]
−
(
s2 + Φ11(b, b)

)1

s
< 0 .

(4.2)

To obtain the sign on the left hand side of (4.2) we note that by (H0) and (H1)

Φ1(a, b)− Φ2(a, b)

a− b
+ Φ12(b, b)

=
g′(a)− g′(b)

a− b
+ bd−2

(
h′(bd)− h′(abd−1)

)
+ b2d−2h′′(bd)

= g′′(c∗) + b2d−3h′′(v∗)
(
b− a

)
+ b2d−2h′′(bd) > 0

for some c∗ ∈ (a, b) and v∗ ∈ (abd−1, bd).
Let now σ ∈ (0, T ] satisfying p(σ) = 0. There exists at least one such point according to

Theorem 3.4. On the other hand, (4.2) implies that at any σ ∈ (0, T ) where p(s) vanishes we have
that ṗ(σ) < 0. Therefore, there can be at most one such point in (0, T ].

The discussion in section 3(c) indicates that the shock will satisfy the Lax shock admissibility
condition if Φ111 < 0. For stored energies of the type (H0) this amounts to condition (H2).

We next show that for d ∈ {2, 3} the nontrivial solution (v, ϕ) in Theorem 3.3 cannot be
connected continuously to a uniformly deformed state. In view of Theorem 4.1, this means that the
cavitating solution is always associated with a unique Lax-admissible precursor shock for dimensions
d = 2, 3. (The method of proof breaks down for d ≥ 4.)

Theorem 4.2. Assume d ∈ {2, 3} and Φ satisfies (H0)-(H4). Let (v, ϕ) be the solution to (3.14)
constructed in Theorem 3.3 and let (a, b) = (ϕ̇, ϕs ). Let A,B be the limits defined in (3.32). Then
A < B and, as a consequence,

(i) (a, b), the solution to (3.11), cannot be connected continuously to a uniformly deformed state
at any s ∈ (0, T ] ;

(ii) there exists unique point σ ∈ (0, T ) at which the solution (a, b) can be connected to a uniformly
deformed state associated with ϕ+(s) = b(σ)s through a Lax-admissible shock.

Proof. The proof utilizes the properties (7.11) and (7.12) of the function P (a, b) proved in the
appendix. Since Q < 0, s ∈ (0, T ), we rewrite (3.11) in the equivalent form

ȧ =
(d− 1)

s
P (a, b)H(s), ḃ =

1

s
(a− b) , (4.3)

where the function H(s) is defined by

H :=
a− b
Q

=
a− b

s2 − Φ11(a, b)
, s ∈ (0, T ). (4.4)
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To prove that A < B, we will argue by contradiction. Suppose that

A = B =: λ (4.5)

Step 1. We will prove that (4.5) implies that there exists ε > 0 such that

H(s) > 0,
d

ds

(
s3H(s)

)
> 0 , s ∈ (T − ε, T ) . (4.6)

and, as a consequence, we must have either

lim
s→T−

H(s) = c for some 0 < c <∞

or
lim
s→T−

H(s) = +∞.
(4.7)

Indeed, by (3.24) we have H(s) > 0 for s ∈ (0, T ). Next, by (3.12), (4.3) we have

Q̇ = 2s−
[
Φ111(a, b)ȧ+ (d− 1)Φ112ḃ

]
= 2s− (d− 1)H

[
Φ111(a, b)P (a, b) + Φ112(a, b)Q

]1
s

=
[
Q+ Φ11(a, b)

]2
s
− (d− 1)H

[
Φ111(a, b)P (a, b) + Φ112(a, b)Q

]1
s

(4.8)

and using (4.3), (4.4) we obtain

dH

ds
=
ȧ− ḃ
Q
− Q̇(a− b)

Q2

=
(d− 1)

s

H

Q
P (a, b)− H

s
− H

Q
Q̇

= (d− 1)
H

Q

[
P (a, b)− 2

d− 1
Φ11(a, b)

]1
s

+ (d− 1)
H2

Q

[
Φ111(a, b)P (a, b) + Φ112(a, b)Q

]1
s
− 3H

s

Rearranging the terms in the resulting expression, we obtain

1

s2(d− 1)

d

ds

(
s3H

)
=

=
H

Q

[
P (a, b)− 2

d− 1
Φ11(a, b)

]
+
H2

Q

[
Φ111(a, b)P (a, b) + Φ112(a, b)Q

]
= H2

(
P (a, b)− Φ11(a, b)

a− b
+ Φ112(a, b)

+
1

Q

[
Φ111(a, b)P (a, b)− 1

H

(3− d
d− 1

)
Φ11(a, b)

])
.

(4.9)

Now, observe that (7.11), (3.32), and the assumption (4.5) imply

lim
s→T−

(
Φ111(a, b)P (a, b)

)
= Φ111(λ, λ)Φ11(λ, λ) < 0 . (4.10)
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Recall that H > 0. Hence by (3.24), (3.25)1, (3.26)1, (4.10) and d ∈ {2, 3} we have

lim
s→T−

1

Q

[
Φ111(a, b)P (a, b)− 1

H

(3− d
d− 1

)
Φ11(a, b)

]
= +∞. (4.11)

Also, by (3.32), (4.5), and (7.12)

lim
s→T−

(
P (a, b)− Φ11(a, b)

a− b
+ Φ112(a, b)

)
=

1

2

(
3Φ112(λ, λ)− Φ111(λ, λ)

)
. (4.12)

Finally, combining (4.11), (4.12), we conclude that there exists ε > 0 such that the right-hand
side of (4.9) is positive for all s ∈ (T − ε, T ). This establishes (4.6) and as a consequence (4.7).

Step 2. By (3.25)1 and (4.5), both the numerator and the denominator of H(s) satisfy

lim
s→T−

(
a(s)− b(s)

)
= lim

s→T−
Q(s) = 0 . (4.13)

This motivates to consider the ratio

r(s) :=
d
dsQ

d
ds(a− b)

=
2s− (d− 1)H

[
Φ111(a, b)P (a, b) + Φ112(a, b)Q

]
1
s

(d− 1)HP (a, b)1
s − (a− b)1

s

=
2
d−1

s2

H −
[
Φ111(a, b)P (a, b) + Φ112(a, b)Q

]
P (a, b)− 1

d−1Q
,

(4.14)

(where we used (4.3), (4.4), (4.8)) and to look for the limiting value of r(s) as s→ T−. To this end
we will use (4.7) and consider two separate cases:

Case 1. Suppose that (4.7)1 holds. Observe that by (3.25)1

0 = lim
s→T−

Q(s) = Φ11(λ, λ)− T 2

and hence by (7.11) and (4.5)
lim
s→T−

P (a, b) = T 2 .

Thus, (3.25)1, (3.32), (4.5), and (4.10) imply

lim
s→T−

r(s) =
2

d− 1

1

c
− Φ111(λ, λ) .

On the other hand, by l’Hôpital rule, we have

0 <
1

c
= lim

s→T−

1

H(s)
= lim

s→T−
r(s) =

2

d− 1

1

c
− Φ111(λ, λ)

Since c ∈ (0,∞) and d ∈ {2, 3} this leads to a contradiction

0 < −Φ111(λ, λ)c =

(
d− 3

d− 1

)
≤ 0 .
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Hence (4.7)1 cannot hold.

Case 2. Suppose that (4.7)2 holds. Then (3.25)1, (3.32) and (4.5) imply

lim
s→T−

r(s) = −Φ111(λ, λ) . (4.15)

By (3.26)2, (4.4), (4.7)2, (4.13), (4.14), (4.15) and l’Hopital’s rule we obtain

0 = lim
s→T−

1

H(s)
= lim

s→T−
r(s) = −Φ111(λ, λ) > 0

which is again a contradiction. Thus, (4.7)2 cannot hold.
Since the hypothesis (4.5) leads to a contradiction, we conclude that A < B for d = 2, 3 and

the proof is completed.

5 Rescaling, inner solution, and the dynamic bifurcation diagram

The objective of this section is to construct the bifurcation diagram of the dynamically cavitating
solution and to determine the critical stretching at which cavitation occurs. We first present an
outline of the approach that we follow.

We use the cavitating solution constructed in Theorem 3.4 under hypotheses (H0)–(H3) and
hypothesis (H4) (relating to the boundary data at the cavity). Recall that this solution, denoted by
(ϕ, v)(s ;ϕ0, v0), depends on two parameters ϕ0 > 0 and v0 in (3.14), and it is defined on a maximal
interval of existence [0, T ) with T = T (ϕ0, v0) <∞. By Theorem 4.1 for every pair ϕ0, v0 > 0 there
exists a unique point

σ = σ(ϕ0, v0) ∈ (0, T (ϕ0, v0)] that satisfies p(σ;ϕ0, v0) = 0 , (5.1)

where p is defined in (3.30) and the identity p(σ) = 0 corresponds to the Rankine-Hugoniot jump
conditions. We recall that if σ(ϕ0, v0) < T (ϕ0, v0) then the connection of the cavitating solution to
the uniformly deformed state on the right happens through a shock, while if σ(ϕ0, v0) = T (ϕ0, v0)
then the cavitating solution connects to a uniform deformation in a C1 fashion through a sonic
singularity. Also, that the latter possibility is excluded in Theorem 4.2 for dimensions d = 2, 3, but
it might conceivably occur for higher dimensions. In both cases, the transversal principal stretch
ϕ(σ)
σ at the shock (or sonic singularity) coincides with the value of external stretching associated to

the forming cavity.
In view of the above, we define the mapping Λ(ϕ0, v0) : R2

+ → R by

Λ(ϕ0, v0) =
ϕ(σ(ϕ0, v0);ϕ0, v0)

σ(ϕ0, v0)
. (5.2)

Referring to the discussion of Section 3.1, we recall that at the cavity the specific volume v0 is
connected with the cavity velocity ϕ0 via the relation v0 = V (ϕ0), where V : [0,∞) → (0,∞) is a
continuous function that encodes the boundary condition at the cavity and has the form

V (x) :=

{
H = h′−1(0) for stress free cavities,

h′−1(G(x)) for cavities with content.
(5.3)
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Figure 1: v(s;ϕ0, H) with ϕ0 ∈ [0.05, 2.5], g(x) = 1
2x

2, h(x) = (x− 1) ln(x) and stress free cavity.

The diagram of the map
ϕ0 7→ Λ(ϕ0, V (ϕ0))

is precisely the bifurcation diagram of a solution with cavity. A numerical computation of this
diagram appears in Figure 2; for explanation of numerical results see Appendix 7.3. In the sequel,
we study various analytical features of the bifurcation diagram. We are particularly interested in
determining the critical stretching λcr at which a cavity opens. This will be captured by the limit

lim
ϕ0→0+

Λ(ϕ0, V (ϕ0)) (5.4)

and one objective is to determine a formula for the computation of (5.4) in the dynamic case.

5.1 Rescaling

Let (ϕ, v)(s ;ϕ0, v0) be the solution to (3.14), with ϕ0, v0 > 0. Numerical experiments indicate that
the functions {v(s ;ϕ0, V (ϕ0))}, with V defined by (5.3), converge pointwise to a step function with
a jump located at s = 0 as ϕ0 → 0; see Figure 1. This indicates an inner layer with respect to ϕ0

and points to resolving the jump as the key in determining the limit (5.4).
To capture the behavior near the origin we rescale (ϕ, v)(s ;ϕ0, v0) with respect to the initial

value ϕ0 > 0 using the scaling transformation

ψ(ξ;ϕ0, v0) :=
ϕ(ϕ0ξ ;ϕ0, v0)

ϕ0
, δ(ξ;ϕ0, v0) := v(ϕ0ξ ;ϕ0, v0) . (5.5)

Note that (ψ, δ) satisfy

ψ(ξ)

ξ
=
ϕ(s)

s

∣∣∣
s=ϕ0ξ

, ψ′(ξ) = ϕ̇(s)
∣∣∣
s=ϕ0ξ

, δ(ξ) = v(s)
∣∣∣
s=ϕ0ξ
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with ′ denoting the differentiation with respect to ξ = s
ϕ0

. The rescaled function (ψ, δ) is now

defined on the maximal interval of existence [0, T (ϕ0, v0)), where T (ϕ0, v0) := 1
ϕ0
T (ϕ0, v0) < ∞

and satisfies the initial value problem

ψ′(ξ) = δ
( ξ
ψ

)d−1

δ′(ξ) =

(
d− 1

ψ

)( ξ
ψ

)2d−3
δ
(
δ
( ξ
ψ

)d − 1
)[
ξ2ϕ2

0 − g′′(δ(
ξ
ψ )d−1)

]
[
−h′′(δ) +

(
ξ2ϕ2

0 − g′′(δ(
ξ
ψ )d−1)

)( ξ
ψ

)2d−2
]

+

(
d− 1

ψ

) ( ξ
ψ

)d−2
[
g′(δ( ξψ )d−1)− g′(ψξ )

]
[
−h′′(δ) +

(
ξ2ϕ2

0 − g′′(δ(
ξ
ψ )d−1)

)( ξ
ψ

)2d−2
]

ψ(0;ϕ0, v0) = 1

δ(0;ϕ0, v0) = v0

(5.6)

As (3.14) is equivalent to (3.10), the rescaled function ψ(ξ;ϕ0, v0) will also satisfy the second order
differential equation (

ϕ2
0ξ

2 − Φ11(ψ′, ψξ )
)
ψ′′ =

d− 1

ξ

(
ψ′ − ψ

ξ

)
P (ψ′, ψξ ) . (5.7)

Theorem 3.3 now gives:

Lemma 5.1. Let d ≥ 2 and Φ satisfy (H0)-(H3). The rescaled function (ψ, δ) in (5.5) is defined on
the maximal interval of existence [0, T (ϕ0, v0)), with T (ϕ0, v0) := 1

ϕ0
T (ϕ0, v0), and satisfies (5.6),

while ψ ∈ C2(0, T ) solves (5.7) on (0, T ). Moreover,

(i) ψ′, ψ
ξ , (ψ′ − ψ

ξ ) are strictly monotonic and satisfy

ψ′′(ξ) > 0,
d

dξ

(ψ
ξ

)
< 0,

d

dξ

(
ψ′ − ψ

ξ

)
> 0 on 0 < ξ < T . (5.8)

(ii) For each 0 < ξ < τ < T

0 < ψ′(ξ) < ψ′(τ) <
ψ(τ)

τ
<
ψ(ξ)

ξ
, Q(ψ′, ψξ , ξϕ0) < 0 . (5.9)

(iii) The following limits exists and satisfy

lim
ξ→T−

Q(ψ′, ψξ , ξϕ0) = 0, lim
ξ→T−

ψ′ = A ≤ lim
ξ→T−

(ψ
ξ

)
= B

for some A,B > 0.

Due to the form of (5.7) the rescaling leads to a regular perturbation problem and it is expected
that the limit has a globally defined solution. Below, we study this limiting process.
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5.2 Uniform bounds for the rescaled solutions

In the sequel we impose the condition that for some ν > 0

Φ11(x, x) = g′′(x) + x2d−2h′′(xd) ≥ ν2 > 0 , for 0 < x <∞. (H5)

This condition is fulfilled if g satisfies g′′(x) ≥ ν2 > 0. The latter assumption is possible for d ≥ 3,
but it is inconsistent with (H3) for d = 2. An alternative is to impose at infinity the condition

lim sup
x→∞

h′′(x)x2− 2
d > 0 (H5′)

which together with (H1) implies (H5). Hypothesis (H5) ensures that T (ϕ0, v0)→∞ as ϕ0 → 0+.

Lemma 5.2. Let Φ satisfy (H0)-(H3), (H5). Let T (ϕ0, v0), T (ϕ0, v0) denote the times of existence
defined in Theorem 3.3 and Lemma 5.1, respectively. Then,

T (ϕ0, v0) = ϕ0T (ϕ0, v0) > ν , ϕ0, v0 > 0 . (5.10)

Proof. By (H2), (3.26) and (H5) we get

Φ11(a, b) > Φ11(b, b) > ν2 > 0 (5.11)

for all 0 < a ≤ b. Let (ϕ, v)(s ;ϕ0, v0) be the solution of (3.14) and A,B the limits defined in (3.32).
Then from (3.12), (3.25), (3.32) and (5.5) we conclude

ϕ0T (ϕ0, v0) = T (ϕ0, v0) =
√

Φ11(A,B) > ν .

In the sequel we employ the notation

f(ξ ;ϕ0, v0) = Φ11(ψ′, ψξ )
( ξ
ψ

)2d−2

= h′′(δ) + g′′(δ( ξψ )d−1)
( ξ
ψ

)2d−2
(5.12)

Q̂(ξ ;ϕ0, v0) = ξ2ϕ2
0 − Φ11(ψ′, ψξ )

= ξ2ϕ2
0 −

[
g′′(δ

( ξ
ψ

)d−1
) +

(ψ
ξ

)2d−2
h′′(δ)

]
(5.13)

D(ξ ;ϕ0, v0) =
( ξ
ψ

)2d−3
δ
(
δ
( ξ
ψ

)d
− 1
)(
ξ2ϕ2

0 − g′′(δ
( ξ
ψ

)d−1
)
)

+
( ξ
ψ

)d−2(
g′(δ

( ξ
ψ

)d−1
)− g′(ψξ )

)
, (5.14)

where (ψ, δ)(ξ ;ϕ0, v0) is the solution of (5.6). We note that under Hypothesis (H3)

|g′(x)| ≤ γ̂ max(1, xd−2) , for x ∈ [0,∞) . (5.15)

The next lemma provides bounds on the Cauchy stress.
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Lemma 5.3. Assume d ≥ 2 and Φ satisfies (H0)-(H3), (H5). Let (ψ, δ)(ξ ;ϕ0, v0) be the solution
to (5.6) defined on a maximal interval of existence [0, T (ϕ0, v0)). Suppose τ > 0 is fixed, ν > 0
satisfies (5.11) and

ετ := ν
(
2(1 + ν + ν−1 + τ)

)−1
. (5.16)

Then, for every
0 < ϕ0 < ετ , 0 < v0 <∞ ,

the interval [0, τ ] ⊂ [0, T (ϕ0, v0)) and

T̂rad(ξ ;ϕ0, v0) :=
[
Φ1(ψ′, ψξ )

( ξ
ψ

)d−1]
(ξ ;ϕ0, v0)

=
[
h′(δ) + g′(δ( ξψ )d−1)

( ξ
ψ

)d−1]
(ξ ;ϕ0, v0)

(5.17)

satisfies ∣∣∣ d
dξ

(
T̂rad(ξ ;ϕ0, v0)

)∣∣∣ < crad(1 + τd+1) , ξ ∈ (0, τ ] (5.18)

with crad := 6(d− 1)(1 + g′′(0) + γ̂).

Proof. Take ϕ0 ∈ (0, ετ ), v0 ∈ (0,∞). By (5.10) the maximal time T (ϕ0, v0) > ν
ϕ0

thus enforcing

that [0, τ ] ⊂ [0, T (ϕ0, v0)) and T̂rad(ξ ;ϕ0, v0) is well-defined on (0, τ ].
Next, we compute

d

dξ

(
T̂rad(ξ ;ϕ0, v0)

)
=

d

dξ

(
g′(δ

( ξ
ψ

)d−1
)
( ξ
ψ

)d−1
+ h′(δ)

)
=
(
g′′(δ

( ξ
ψ

)d−1
)
( ξ
ψ

)2d−2
+ h′′(δ)

)
δ′

+
d− 1

ψ

( ξ
ψ

)2d−3
δ
(

1− δ
( ξ
ψ

)d)
g′′(δ

( ξ
ψ

)d−1
)

+
d− 1

ψ

( ξ
ψ

)d−2(
1− δ

( ξ
ψ

)d)
g′(δ

( ξ
ψ

)d−1
) .

(5.19)

Observe that by (5.6)2, (5.14), and (5.13)(
g′′(δ

( ξ
ψ

)d−1
)
( ξ
ψ

)2d−2
+ h′′(δ)

)
δ′ =

d− 1

ψ
D(ξ)

(
ξ2ϕ2

0

Q̂(ξ)
− 1

)
and hence (5.19) reads

1

d− 1

d

dξ

(
T̂rad(ξ ;ϕ0, v0)

)
=
( ξ
ψ

)2d−2
δ
(

1− δ
( ξ
ψ

)d)
ξϕ2

0 +
( ξ
ψ

)D(ξ)

Q̂(ξ)
ξϕ2

0

+
1

ψ

( ξ
ψ

)d−2(
g′(ψξ )− δ

( ξ
ψ

)d
g′(δ

( ξ
ψ

)d−1
)
)

=: I1 + I2 + I3 .

(5.20)
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We now estimate the right-hand side of (5.20). By (5.8)-(5.9)

1 = ψ(0) < ψ(ξ), 0 <
(ψ′ξ
ψ

)
= δ
( ξ
ψ

)d
< 1 , ξ ∈ (0, T ) (5.21)

and hence

0 ≤ I1 =
( ξ
ψ

)2d−2
δ
(

1− δ
( ξ
ψ

)d)
ξϕ2

0 < ξd−1ϕ2
0 ≤ τd−1ϕ2

0 , ξ ∈ (0, τ ] . (5.22)

Next, by (H3), (5.21)2, and (5.15) obtain

|I3| ≤
∣∣∣( ξ
ψ

)d−2
g′(ψξ )

∣∣∣+
∣∣∣( ξ
ψ

)d−2
g′(δ( ξψ )d−1)

∣∣∣
=
∣∣∣( ξ
ψ

)d−2
g′(ψξ )

∣∣∣+
∣∣∣(ψ′ξ

ψ

)d−2 g′(ψ′)

(ψ′)d−2

∣∣∣ ≤ 2γ̂ (1 + τd−2) , ξ ∈ (0, τ ] .

(5.23)

Now, using (5.21), we obtain the estimate∣∣∣( ξ
ψ

)2d−3
δ
(
δ
( ξ
ψ

)d
− 1
)∣∣∣ =

(ψ
ξ

)∣∣∣( ξ
ψ

)d−2
δ
( ξ
ψ

)d(
δ
( ξ
ψ

)d
− 1
)∣∣∣ ≤ (ψ

ξ

)
τd−2

which together with (H1), (H2), (5.14), (5.21)2, and (5.23) gives the estimate

∣∣D(ξ ;ϕ0, v0)
∣∣ ≤ ∣∣∣( ξ

ψ

)2d−3
δ
(
δ
( ξ
ψ

)d
− 1
)∣∣∣(ξ2ϕ2

0 + g′′(0)
)

+
∣∣∣( ξ
ψ

)d−2
g′(δ

( ξ
ψ

)d−1
)
∣∣∣+
∣∣∣( ξ
ψ

)d−2
g′(ψξ )

∣∣∣
≤
(ψ
ξ

)
(1 + τd)(ϕ2

0 + g′′(0)) + 2γ̂ (1 + τd−2) , ξ ∈ (0, τ ] .

(5.24)

Next, since ϕ0 ∈ (0, ετ ), by (5.11) we have

−Q̂(ξ ;ϕ0, v0) = Φ11(ψ′, ψξ )− ϕ2
0ξ

2 >
ν2

2
, ξ ∈ (0, τ ] (5.25)

and therefore, employing (5.16), (5.24) and (5.21), we obtain

|I2| =
∣∣∣∣( ξψ)D(ξ)

Q̂(ξ)
ξϕ2

0

∣∣∣∣ ≤ 2

ν2

(
(1 + τd)(ϕ2

0 + g′′(0)) + 2γ̂ (1 + τd−2)
( ξ
ψ

))
ξϕ2

0

≤ 2ϕ0

ν2

(
(τ + τd+1)(ϕ2

0 + g′′(0)) + 2γ̂ (τ2 + τd)
)
ϕ0

≤ 4(1 + τd+1)(ϕ2
0 + g′′(0) + γ̂)ϕ0 , ξ ∈ (0, τ ] ,

(5.26)

where we used the fact that 2ϕ0

ν2
< 1 because 0 < ϕ0 < ετ . Thus by (5.23) and (5.26) we conclude

|I2|+ |I3| ≤ 4(1 + τd+1)(ϕ2
0 + g′′(0) + γ̂)ϕ0 + 2γ̂(1 + τd−2) , ξ ∈ (0, τ ]. (5.27)

Combining (5.20), (5.22) and (5.27) we obtain (5.18).
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Lemma 5.4. Assume d ≥ 2 and Φ satisfies (H0)-(H5). Let (ψ, δ)(ξ ;ϕ0, v0) be the solution to (5.6)
defined on a maximal interval of existence [0, T (ϕ0, v0)). Let τ > 0, vM > vm > 0 be fixed. Then,
for every

0 < ϕ0 < ετ , vm ≤ v0 ≤ vM
the interval [0, τ ] ⊂ [0, T (ϕ0, v0)) and

0 < c1 < δ(ξ ;ϕ0, v0) < c2, 1 ≤ ψ(ξ ;ϕ0, v0) < c3, ∀ξ ∈ [0, τ ]

for some c1 = c1(τ, vm), c2 = c2(τ, vM ), c3 = c3(τ, vM ) independent of ϕ0, v0.

Proof. Fix τ > 0, vM > vm > 0. Take any ϕ0 ∈ (0, ετ ), v0 ∈ [vm, vM ] and consider the solution
(ψ, δ)(ξ ;ϕ0, v0) to (5.6). From (5.17) it follows that

T̂rad(0;ϕ0, v0) := lim
ξ→0+

T̂rad(ξ ;ϕ0, v0) = h′(v0)

and hence, using (5.18), we obtain for ξ ∈ [0, τ ]∣∣T̂rad(ξ ;ϕ0, v0)− T̂rad(0;ϕ0, v0)
∣∣

=
∣∣h′(δ) + g′(δ( ξψ )d−1)

( ξ
ψ

)d−1
− h′(v0)

∣∣ < crad(1 + τd+1)τ .

Then, similarly to (5.23), using (5.15) and (5.21), we get∣∣∣( ξ
ψ

)d−1
g′(δ( ξψ )d−1)

∣∣∣ ≤ γ̂ (1 + τd−2)τ , ξ ∈ (0, τ ]

and therefore
|h′(δ(ξ ;ϕ0, v0))− h′(v0)| < 2(crad + γ̂)(1 + τd+2), ξ ∈ [0, τ ].

By (H1), (H4), the inverse h′−1(z) is well-defined for all z ∈ (−∞,∞) and strictly positive. Hence

0 < c1 < δ(ξ ;ϕ0, v0) < c2, ξ ∈ [0, τ ]

with
c1(τ, vm) := h′−1(h′(vm)− 2(crad + γ̂)(1 + τd+2))

c2(τ, vM ) := h′−1(h′(vM ) + 2(crad + γ̂)(1 + τd+2)) .

Next, by (5.6)1, (5.21)1 and the bound for δ we obtain

0 < ψ′(ξ ;ϕ0, v0) = δ
( ξ
ψ

)d−1
< δτd−1 < c2τ

d−1, ξ ∈ (0, τ ]

and hence, since ψ(0) = 1, we conclude

1 ≤ ψ(ξ ;ϕ0, v0) < c3(τ, vM ) := 1 + c2τ
d , ξ ∈ [0, τ ] .

5.3 The limiting system: ϕ0 = 0

In this section we consider the limiting problem ϕ0 = 0 in (5.6) and discuss its connection to the
problem of radial solutions for equilibrium elasticity analyzed by [2].
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5.3.1 Inner solution

Setting ϕ0 = 0 into (5.6) leads to the initial value problem

ψ′0 = δ0

( ξ
ψ0

)d−1

δ′0 =

(
d− 1

ψ0

)−( ξψ0

)2d−3
δ0

(
δ0

( ξ
ψ0

)d − 1
)
g′′(δ0( ξ

ψ0
)d−1)

]
[
−h′′(δ0)− g′′(δ0( ξ

ψ0
)d−1)

( ξ
ψ0

)2d−2
]

+

(
d− 1

ψ0

) ( ξ
ψ0

)d−2
[
g′(δ0( ξ

ψ0
)d−1)− g′(ψ0

ξ )
]

[
−h′′(δ0)− g′′(δ0( ξ

ψ0
)d−1)

( ξ
ψ0

)2d−2
]

ψ0(0; v0) = 1

δ0(0; v0) = v0

(5.28)

while setting ϕ0 = 0 into (5.7) gives the second order differential equation

−Φ11(ψ′0,
ψ0

ξ )ψ′′0 =
d− 1

ξ

(
ψ′0 −

ψ0

ξ

)
P (ψ′0,

ψ0

ξ ) . (5.29)

First, we show that (5.28) has a globally-defined solution. This is an inner solution that describes
the behavior of a material with a cavity whose surface moves with infinitely small speed.

Proposition 5.5. Let d ≥ 2, let Φ satisfy (H0)-(H3), and v0 > 0 be fixed. Then, there exists a
unique global solution

ψ0(ξ ; v0) ∈ C2[0,∞), δ0(ξ ; v0) ∈ C1[0,∞)

to the initial value problem (5.28) with ψ0 solving the equation (5.29) on (0,∞). The solution has
the following properties:

(i) ψ′0, ψ0

ξ , (ψ′0 −
ψ0

ξ ) are strictly monotonic and satisfy

ψ′′0(ξ) > 0,
d

dξ

(ψ0

ξ

)
< 0,

d

dξ

(
ψ′0 −

ψ0

ξ

)
> 0, ξ ∈ (0,∞) . (5.30)

0 < ψ′0(ξ) < ψ′0(τ) <
ψ0(τ)

τ
<
ψ0(ξ)

ξ
, 0 < ξ < τ <∞. (5.31)

(ii) The following limits exist and satisfy

0 < lim
ξ→∞

ψ′0 = lim
ξ→∞

(ψ0

ξ

)
=: Λ0(v0) < ∞ for some Λ0 = Λ0(v0) > 0 . (5.32)

(iii) ψ0, δ0 obey the bounds

max(1,Λ0ξ) < ψ0(ξ) < 1 + Λ0ξ, 0 < ψ′0(ξ) < Λ0 (5.33)

0 < µ1 < δ0(ξ) < µ2 , (5.34)

for ξ ∈ [0,∞) and some µ1 = µ1(v0), µ2 = µ2(v0). In addition,

δ′0(ξ) ∈ L1(0,∞) . (5.35)
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Proof. The first part of the proof proceeds along the lines of the proof of Theorem 3.3. Fix v0 > 0.
Using (H3), there exists a unique local solution (ψ0, δ0) of (5.28). Clearly, ψ0 satisfies (5.29), and
if we set

a0 = ψ′0 , b0 =
ψ0

ξ
,

(a0, b0) also satisfies the system of ordinary differential equations

a′0 = −d− 1

ξ
(a0 − b0)

P (a0, b0)

Φ11(a0, b0)

b′0 =
1

ξ
(a0 − b0)

(5.36)

By construction, the solution (a0, b0) starts above the diagonal line of equilibria a0 = b0 for (5.36).
Using (3.26) we see that the monotonicity properties (5.30) and (5.31) hold, that the solution
(a0, b0) is globally defined, and that the following limits exist

lim
ξ→∞

ψ′0 = A ≤ lim
ξ→∞

(ψ0

ξ

)
= B, lim

ξ→∞
δ0 = ABd−1

for some finite A,B > 0.
From (5.36) we deduce that

d

dξ
(b0 − a0) +

1

ξ

(
1 + (d− 1)

P (a0, b0)

Φ11(a0, b0)

)
(b0 − a0) = 0

and using again (3.26)

0 < (b0 − a0)(ξ) = (b0 − a0)(1) exp
{
−
∫ ξ

1

1

ζ

(
1 + (d− 1)

P (a0, b0)

Φ11(a0, b0)

)
dζ
}

≤ (b0 − a0)(1)

ξ

(5.37)

Hence, A = B =: Λ0, and the monotonicity properties (5.30) yield the bounds

1 < ψ0 , 0 < ψ′0 < Λ0 , Λ0ξ < ψ0 < 1 + Λ0ξ

thus providing (5.33) and (5.34). Finally, recalling (5.28)1, we have

δ′0 = ψ′′0

(ψ0

ξ

)d−1
+ (d− 1)ψ′0

(ψ0

ξ

)d−2 d

dξ

(ψ0

ξ

)
.

Moroever, (5.32), (5.37) and (5.29) imply∣∣∣∣ ddξ(ψ0

ξ

)∣∣∣∣ ≤ C

ξ2
, 0 < ψ′′0 ≤

C

ξ2
, for ξ ≥ 1,

and thus δ′0 is integrable on [1,∞). Since δ0 ∈ C1[0,∞), we conclude with (5.35).
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For future purposes we introduce the notation

f0(ξ ; v0) = Φ11(ψ′0,
ψ0

ξ )
( ξ
ψ0

)2d−2

= h′′(δ0) + g′′(δ0( ξ
ψ0

)d−1)
( ξ
ψ0

)2d−2
(5.38)

D0(ξ ; v0) = −
( ξ
ψ0

)2d−3
δ0

(
δ0

( ξ
ψ0

)d
− 1
)
g′′(δ0( ξ

ψ0
)d−1)

+
( ξ
ψ0

)d−2[
g′(δ0( ξ

ψ0
)d−1)− g′(ψ0

ξ )
]
. (5.39)

5.3.2 Connections to equilibrium elasticity. Representations of Λ0

In [2] J. Ball considers the boundary-value problem for the equations of equilibrium elasticity div

(
∂W

∂F
(∇y)

)
= 0 , x ∈ B = {x ∈ Rd : |x| < 1}

y(x) = λx , x ∈ ∂B
(5.40)

for some stretch λ > 0 and studies radial solutions to (5.40) that have the form

y(x) =
w(|x|)
|x|

with w(R) : [0,∞)→ [0,∞) . (5.41)

The amplitude w of such solution satisfies the boundary-value problem
d

dR

(
Rd−1Φ1

(
w′,

w

R

))
− (d− 1)Rd−2Φ2

(
w′,

w

R

)
= 0

w(1) = λ .
(5.42)

It is proved in [2, Theorem 7.9] that a solution wλ of (5.42) with wλ(0) > 0 and Trad[wλ](0) = 0
exists if and only if λ > λcr where

λcr := lim
R→∞

w(R)

R
(5.43)

and w(R) is any solution to radial elastostatics (5.42)1 with w(0) > 0 and Trad[w](0) = 0 (such
solutions exist by [2, Theorems 7.3, 7.7]); here

Trad[w](R) := Φ1

(
w′,

w

R

)(R
w

)d−1

denotes the radial component of the Cauchy stress. Moreover, the solution wλ generates a cavitating
weak solution to (5.40) via the formula (5.41).

Let (ψ0, δ0)(ξ ; v0) be the solution of (5.28). Then, recalling (3.5), observe that (5.29) translates
into

d

dξ

(
ξd−1Φ1

(
ψ′0,

ψ0

ξ

))
− (d− 1)ξd−2Φ2

(
ψ′0,

ψ0

ξ

)
= 0 .

Thus, ψ0(ξ0 ; v0) is a solution to (5.42), with λ = ψ0(1; v0). By (3.19)

Trad[ψ0(· ; v0)](0) = 0 if and only if v0 = H
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and hence (5.32), (5.43) imply that the critical stretch λcr for radial equilibrium elasticity (in the
stress-free case) satisfies

λcr = Λ0(H) . (5.44)

Representations of Λ0. We briefly discuss some of the representations of Λ0(v0) defined in (5.32).
Suppose d ≥ 2, Φ satisfies (H0)-(H3) and (ψ0, δ0)(ξ ; v0) is the solution of (5.28). Then (5.28)1 and
(5.32) imply

δ0(ξ ; v0) =
[
ψ′0

(ψ0

ξ

)d−1]
(ξ ; v0)→ (Λ0(v0))d as ξ →∞ .

Thus, integrating (5.28)2 and recalling (5.35), we conclude

Λ0(v0) = d

√
v0 +

∫ ∞
0

(1− d)

[
D0

ψ0f0

]
(ξ ; v0) dξ , (5.45)

with f0, D0 defined by (5.38), (5.39). Since the limiting system (5.28) is non-singular, the integral
in (5.45) is well-defined; its rate of convergence is O(ξ−1).

Another representation can be obtained by differentiating

Trad[ψ0(ξ ; v0)] =
[
h′(δ0) + g′(δ0( ξ

ψ0
)d−1)

( ξ
ψ0

)d−1]
(ξ; v0)

which, in view of (5.28)2, gives

d

dξ

(
Trad[ψ0(ξ ; v0)]

)
=
{d− 1

ψ0

( ξ
ψ0

)d−2[
g′(ψ0

ξ )− δ
( ξ
ψ0

)d
g′(δ0

( ξ
ψ0

)d−1
)
]}

(ξ ; v0) . (5.46)

(We note that (5.46) can be directly obtained by setting ϕ0 = 0 in (5.20)). Integrating the above
identity over (0, ξ), letting ξ →∞ and using (5.32) leads to

χ(Λ0(v0)) = h′(v0) +

∫ ∞
0

{
d− 1

ψ0

( ξ
ψ0

)d−2 [
g′(ψ0

ξ )− δ0

( ξ
ψ0

)d
g′(δ0

( ξ
ψ0

)d−1
)
]}

(ξ ; v0) dξ

where
χ(x) := Φ1(x, x)x1−d = h′(xd) + g′(x)x1−d, x ∈ (0,∞) .

Suppose that
χ′(x) > 0 and lim sup

x→0+

(
h′(x)x

)
< 0. (H6)

In that case, the inverse χ−1 is well-defined and hence

Λ0(v0) =

χ−1

(
h′(v0) +

∫ ∞
0

[
d− 1

ξ

( ξ
ψ0

)d−2(
g′(ψ0

ξ )− δ0

( ξ
ψ0

)d
g′(δ0

( ξ
ψ0

)d−1
)

]
(ξ; v0)dξ

)
.

(5.47)

For further ideas on the representation of Λ0(v0) we refer the reader to [2].
From the representation formulas (5.45), (5.47) one can derive lower bounds for the critical

stretch for cavitation Λ0(v0). We consider first the formula (5.47) and impose in addition to (H6)
the hypothesis (

g′(x)x
)′ ≥ 0 , x ∈ (0,∞) . (H7)
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The latter is the expression of the Baker-Ericksen inequality for stored energies of class (H0) and is
implied by rank-one convexity (see Proposition 7.2). Using (5.47) in conjunction to (5.28)1, (5.31),
(H6) and (H7) we obtain

Λ0(v0) > χ−1(h′(v0)) . (5.48)

Next we consider the representation formula (5.45) and impose the hypothesis(
g′′(x)x

)′ ≥ 0 , x ∈ (0,∞) . (H8)

Recall that D0 is defined in (5.39) and set a = ψ̇0, b = ψ0

ξ . Using (H8), and the facts a < b and

g′′′ ≤ 0, we obtain

D0 = −b2−da(ab−1 − 1)g′′(a) + b2−d(g′(a)− g′(b))

= b1−d(a− b)
(
− ag′′(a) + b

g′(a)− g′(b)
a− b

)
≤ b1−d(b− a)(ag′′(a)− bg′′(b))
≤ 0 .

In turn, (5.45), (5.38) and (H1) imply the lower bound

Λ0(v0) > d
√
v0 . (5.49)

5.4 Convergence to the limiting solution

In this section we study the convergence of solutions (ψ, δ) = (ψ, δ)(ξ ;ϕ0, V (ϕ0)) of the system
(5.6) to solutions (ψ0, δ0) = (ψ0, δ0)(ξ ;V (0)) of the system (5.28). Using the notations (5.12)-(5.14),
(5.38)-(5.39), we rewrite the equations (5.6)2, (5.28)2 as follows

δ′ = −
[
d− 1

ψ

(
1− ϕ2

0ξ
2

Q̂

)D
f

]
(ξ;ϕ0, V (ϕ0))

δ′0 = −
[
d− 1

ψ0

D0

f0

]
(ξ ;V (0)) .

(5.50)

Recall also that the initial data satisfy

ψ(0;ϕ0, V (ϕ0))− ψ0(0;V (0)) = 0 ,

δ(0;ϕ0, V (ϕ0))− δ0(0;V (0)) = V (ϕ0)− V (0) .
(5.51)

Proposition 5.6. Assume d ≥ 2, Φ satisfies (H0)-(H5), and V : [0,∞)→ (0,∞) is a continuous
function defined by (5.3). Let (ψ, δ), (ψ0, δ0) be the solutions of (5.6), (5.28), respectively. Let
τ > 0 be fixed. Then, there exists ε̂τ > 0 such that for every

0 < ϕ0 < ε̂τ

the interval [0, τ ] ⊂ [0, T (ϕ0, V (ϕ0))) and(
ψ(ξ ;ϕ0, V (ϕ0))− ψ0(ξ ;V (0))

)2
+
(
δ(ξ ;ϕ0, V (ϕ0))− δ0(ξ ;V (0))

)2

≤ Ĉ
((
V (ϕ0)− V (0)

)2
+ ϕ4

0

)
, ∀ξ ∈ [0, τ ]

(5.52)
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with the constant Ĉ = Ĉ(τ, V (0)) > 0 and independent of ϕ0. As a consequence,

(ψ, δ)(ξ ;ϕ0, V (ϕ0)) → (ψ0, δ0)(ξ ;V (0)) as ϕ0 → 0 (5.53)

uniformly on [0, τ ].

Proof. Fix τ > 0. In view of continuity of V , there exists ε̃ > 0 such that

1

2
V (0) < V (ϕ0) < 2V (0) , ∀ϕ0 ∈ (0, ε̃) . (5.54)

Set ε̂τ := min(ετ , ε̃), with ετ defined in (5.16). Then, Lemma 5.4, (5.33)1, (5.34), (5.54) imply

[0, τ ] ⊂ [0, T (ϕ0, V (ϕ0))) for every ϕ0 ∈ (0, ε̂τ )

and there exist constants m1,m2,m3 > 0 that depend on τ, V (0) and are independent of ϕ0 such
that

0 < m1 < δ(ξ ;ϕ0, V (ϕ0)), δ0(ξ ;V (0)) < m2

1 ≤ ψ(ξ ;ϕ0, V (ϕ0)), ψ0(ξ ;V (0)) < m3

(5.55)

for all ϕ0 ∈ (0, ε̂τ ), ξ ∈ [0, τ ].

Next, we fix ϕ0 ∈ (0, ε̂τ ) and derive an energy identity that monitors the distance between the
solutions (ψ, δ) and (ψ0, δ0) of the systems (5.6), (5.28), respectively. First, we subtract (5.28)1

from (5.6)1 to get the identity

ψ′ − ψ′0 = δ
( ξ
ψ

)d−1
− δ0

( ξ
ψ0

)d−1

= (δ − δ0)
( ξ
ψ

)d−1
+ (ψ0 − ψ)

δ0

ψ0

( ξ
ψ

)d−1
d−2∑
i=0

( ψ
ψ0

)i
.

(5.56)

Subtracting the two equations in (5.50) gives

1

d− 1
(δ′ − δ′0) =

(D0 −D)

ψ0f0
+

(ψ − ψ0)

ψψ0f0
D +

(f − f0)

ψff0
D +

ϕ2
0 ξ

2

Q̂ψf
D . (5.57)

Multiplying (5.56) by (ψ − ψ0) and (5.57) by (δ − δ0)(d− 1) and adding the results we obtain

d

dξ

(1

2
(ψ − ψ0)2 +

1

2
(δ − δ0)2

)
= (ψ − ψ0)(δ − δ0)

( ξ
ψ

)d−1
− (ψ − ψ0)2 δ0

ψ0

( ξ
ψ

)d−1
d−2∑
i=0

( ψ
ψ0

)i
(d− 1)

[
− (D −D0)(δ − δ0)

1

ψ0f0
+ (ψ − ψ0)(δ − δ0)

D

ψψ0f0

+ (f − f0)(δ − δ0)
D

ψff0
+ (δ − δ0)

Dϕ2
0 ξ

2

Q̂ψf

]
, ξ ∈ (0, τ ] .

(5.58)
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We now estimate the right-hand side of (5.58). By (5.55) we get for ξ ∈ (0, τ ]

0 <
( ξ
ψ

)d−1
≤ τd−1 ,

∣∣∣ δ0

ψ0

( ξ
ψ

)d−1
d−2∑
i=0

( ψ
ψ0

)i∣∣∣ ≤ τd−1m2

d−2∑
i=0

mi
3 . (5.59)

Similarly, by (H2), (5.25), (5.12), (5.38), and (5.55), we obtain∣∣∣ 1

ψ0f0

∣∣∣+
∣∣∣ 1

ψψ0f0

∣∣∣+
∣∣∣ 1

ψff0

∣∣∣+
∣∣∣ ξ2

Q̂ψf

∣∣∣ ≤ max(1, h′′(m2))

(h′′(m2))2

(
3 +

2τ2

ν2

)
. (5.60)

Also, using (H2), (5.14), (5.55) and the inequalities (5.21)2, (5.23), we obtain∣∣D(ξ ;ϕ0, V (ϕ0))
∣∣ ≤ τ2d−3m2(τ2ϕ2

0 + g′′(0)) + 2γ̂ (1 + τd−2) . (5.61)

Combining (5.58)–(5.61), and using Young’s inequality, we get for ξ ∈ (0, τ ]

d

dξ

(
(ψ − ψ0)2 + (δ − δ0)2

)
≤ C

(
(ψ − ψ0)2 + (δ − δ0)2 + (f − f0)2 + (D −D0)2 + ϕ4

0

) (5.62)

with C = C(τ, V (0)) > 0 independent of ϕ0.

By (5.55), (5.56) and (5.59) for all ξ ∈ (0, τ ]∣∣f(ξ ;ϕ0, V (ϕ0))− f0(ξ ;V (0))
∣∣

≤ |h′′(δ)− h′′(δ0)|+ g′′(δ0( ξ
ψ0

)d−1)
∣∣∣( ξ
ψ

)2d−2
−
( ξ
ψ0

)2d−2∣∣
+
( ξ
ψ

)2d−2
|g′′(δ( ξψ )d−1)− g′′(δ0( ξ

ψ0
)d−1)|

≤ |δ − δ0| sup
x∈[m1,m2]

|h′′′(x)|+ τ2d−2|ψ0 − ψ| g′′(0)
2d−3∑
i=0

mi
3

+ τ3d−3
(
|δ − δ0|+ |ψ0 − ψ|m2

d−2∑
i=0

mi
3

)
sup

x∈[0,m2τd−1]

|g′′′(x)| .

(5.63)

32



Next, by (5.14) and (5.39)

|D(ξ ;ϕ0, V (ϕ0))−D0(ξ ;V (0))|

≤

{∣∣∣( ξ
ψ

)2d−3
δ
(
δ
( ξ
ψ

)d
− 1
)
ξ2ϕ2

0

∣∣∣
+
∣∣∣( ξ
ψ0

)2d−3
−
( ξ
ψ

)2d−3∣∣∣∣∣∣δ0

(
δ0

( ξ
ψ0

)d
− 1
)
g′′(δ0

( ξ
ψ0

)d−1
)
∣∣∣

+
∣∣∣δ0 − δ

∣∣∣∣∣∣( ξ
ψ

)2d−3(
δ0

( ξ
ψ0

)d
− 1
)
g′′(δ0

( ξ
ψ0

)d−1
)
∣∣∣

+
∣∣∣δ0

( ξ
ψ0

)d
− δ
( ξ
ψ

)d∣∣∣∣∣∣δ ( ξ
ψ

)2d−3
g′′(δ0

( ξ
ψ0

)d−1
)
∣∣∣

+
∣∣∣g′′(δ0

( ξ
ψ0

)d−1
)− g′′(δ

( ξ
ψ

)d−1
)
∣∣∣∣∣∣(δ( ξ

ψ

)d
− 1
)
δ
( ξ
ψ

)2d−3∣∣∣}

+
∣∣∣( ξ
ψ

)d−2
g′(δ

( ξ
ψ

)d−1
)−

( ξ
ψ0

)d−2
g′(δ0

( ξ
ψ0

)d−1
)
∣∣∣

+
∣∣∣( ξ
ψ

)d−2
g′(ψξ )−

( ξ
ψ0

)d−2
g′(ψ0

ξ )
∣∣∣ =: J1 + J2 + J3 .

(5.64)

Using (H2), (5.21)2, (5.55), (5.56), and (5.59) we obtain

J1 ≤ τ2d−1m2ϕ
2
0 + τ2d−3|ψ0 − ψ|g′′(0)m2

2d−4∑
i=0

mi
3 + τ2d−3g′′(0)|δ0 − δ|

+ m2 τ
3d−3g′′(0)

(
|δ − δ0|+ |ψ0 − ψ|m2

d−1∑
i=0

mi
3

)
+m2τ

3d−4
(
|δ − δ0|+ |ψ0 − ψ|m2

d−2∑
i=0

mi
3

)
sup

x∈[0,m2τd−1]

|g′′′(x)|.

(5.65)

To estimate terms J2, J3 we consider two separate cases for the constant d.

Case d = 2. First, using (H2), (5.56), (5.59), we obtain

J2 ≤ g′′(0) τd−1
(
|δ − δ0|+ |ψ0 − ψ|m2

d−2∑
i=0

mi
3

)
. (5.66)

Then by (H1), (H2), and (H3) we obtain for x ∈ [0,∞)

0 ≤ g′′(x)x ≤
∫ 1

0
g′′(sx)x ds = g′(x)− g′(0) ≤ γ − g′(0) . (5.67)

Then, using (H2), (5.67), and the fact that ψ,ψ0 ≥ 1, we obtain

J3 =
∣∣∣g′(ψξ )− g′(ψ0

ξ )
∣∣∣ ≤ g′′(1

ξ )
∣∣∣ψ
ξ
− ψ0

ξ

∣∣∣ ≤ (γ − g′(0)) |ψ − ψ0|. (5.68)
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Case d ≥ 3. In that case, using (5.55) and (5.33), we get

J2 ≤ g′′(0) τ2d−3
(
|δ − δ0|+ |ψ0 − ψ|m2

d−2∑
i=0

mi
3

)
+ τd−2|ψ0 − ψ|

d−3∑
i=0

mi
3 sup
x∈[0,Λ0]

|g′(x)|

(5.69)

and, similarly, using (H2) and the bound (5.23), we obtain

J3 ≤
∣∣∣( ξ
ψ

)d−2
−
( ξ
ψ0

)d−2∣∣∣∣∣g′(ψξ )
∣∣+
( ξ
ψ0

)d−2∣∣g′(ψξ )− g′(ψ0

ξ )
∣∣

≤
(
|ψ0 − ψ|

d−3∑
i=0

mi
3

)∣∣∣( ξ
ψ

)d−2
g′(ψξ )

∣∣∣+ ξd−2g′′(0)
∣∣∣ψ
ξ
− ψ0

ξ

∣∣∣
≤
(
|ψ0 − ψ|

d−3∑
i=0

mi
3

)
2γ̂ (1 + τd−2) + τd−3g′′(0)|ψ − ψ0| .

(5.70)

Combining the estimates (5.62)–(5.70) we obtain

d

dξ

(
(ψ − ψ0)2 + (δ − δ0)2

)
≤ C

(
(ψ − ψ0)2 + (δ − δ0)2 + ϕ4

0

)
, ξ ∈ (0, τ ] (5.71)

with C = C(τ, v0) > 0 independent of ϕ0. Then Gronwall’s lemma and (5.51) yield (5.52) and
(5.53).

5.5 The critical stretching for dynamic bifurcation

By Proposition 5.5 for each v0 > 0 there exists a unique Λ0 = Λ0(v0) such that

0 < Λ0(v0) = lim
ξ→∞

ψ0(ξ ; v0)

ξ
= lim

ξ→∞
ψ′0(ξ ; v0) , (5.72)

where (ψ0, δ0)(ξ ; v0) is a global solution of (5.28). In this section, we will show that Λ0(V (0)), with
V defined by (5.3), is the critical stretching for dynamic bifurcation from the uniformly deformed
state for the system (3.14), (3.20).

Theorem 5.7. Assume d ≥ 2, Φ satisfies (H0)-(H5), and V is defined by (5.3). Let (ϕ, v) be as
in Theorem 3.3, and let σ, Λ, Λ0 be defined by (5.1), (5.2), and (5.72), respectively. Then,

(i)
lim

ϕ0→0+
Λ(ϕ0, V (ϕ0)) = Λ0(V (0)) (5.73)

(ii) The strength of the shock and its speed satisfy

lim
ϕ0→0+

[ϕ
s
− ϕ̇

]
(σ(ϕ0, V (ϕ0));ϕ0, V (ϕ0)) = 0 (5.74)

lim
ϕ0→0+

σ(ϕ0, V (ϕ0)) =
√

Φ11(Λ0(V (0)),Λ0(V (0))) =: σ0 > 0. (5.75)
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(iii) The solutions of (3.14) satisfy

lim
ϕ0→0+

ϕ(s ;ϕ0, V (ϕ0)) = Λ0(V (0))s , 0 ≤ s < σ0

lim
ϕ0→0+

v(s ;ϕ0, V (ϕ0)) =

{
V (0), s = 0[
Λ0(V (0))

]d
, 0 < s < σ0

(5.76)

Proof. We recall that (ϕ, v)(s;ϕ0, V (ϕ0)) are defined for s ∈ [0, σ(ϕ0, V (ϕ0))] and solve the initial
value problem (3.14) with v0 = V (ϕ0). At the point σ := σ(ϕ0, V (ϕ0)) there is a shock (or sonic
singularity). If we have a shock at σ, then (3.30), (5.1), (3.23), (H2) and (H5) imply

σ(ϕ0, V (ϕ0)) =

√
Φ1(ϕ̇, ϕs )− Φ1(ϕs ,

ϕ
s )

ϕ̇− ϕ
s

∣∣∣∣∣
s=σ

≥
√

Φ11(
ϕ

s
,
ϕ

s
)

∣∣∣∣
s=σ

≥ ν , ∀ϕ0 > 0 . (5.77)

If σ is a sonic singularity then the same conclusion follows from Theorem 4.1 (ii), in conjunction
with (3.12) and (3.25).

By (5.5) the rescaled functions (ψ, δ)(ξ;ϕ0, V (ϕ0)) are well-defined for ξ ∈ [0, ξ∗(ϕ0)], where

ξ∗(ϕ0) :=
σ(ϕ0, V (ϕ0))

ϕ0
, (5.78)

and satisfy the initial value problem (5.6). Note that by (5.2) and (5.5)

Λ(ϕ0, V (ϕ0)) =

[
ϕ

s

]
(σ(ϕ0);ϕ0, V (ϕ0)) =

[
ψ

ξ

](
ξ∗(ϕ0), ϕ0, V (ϕ0)

)
. (5.79)

Consider the function ψ = ψ(ξ;ϕ0, V (ϕ0)) and recall that ψ − ξψ′ > 0 and d
dξ (ψ − ξψ′) < 0.

Hence

0 <
ψ

ξ
− ψ′ < 1

ξ
, 0 < ξ ≤ ξ∗(ϕ0) (5.80)

and therefore

0 < − d

dξ

(
ψ(ξ ;ϕ0, V (ϕ0))

ξ

)
=

1

ξ

(
ψ

ξ
− ψ′

)
<

1

ξ2
, 0 < ξ ≤ ξ∗(ϕ0) . (5.81)

Then (5.79) and (5.81) imply

0 <
ψ(τ ;ϕ0, V (ϕ0))

τ
− Λ(ϕ0, V (ϕ0)) = −

∫ ξ∗(ϕ0)

τ

d

dξ

(
ψ

ξ

)
dξ <

1

τ
, 0 < τ ≤ ξ∗(ϕ0) . (5.82)

Next, we consider the functions (ψ0, δ0)(ξ;V (0)) defined on [0,∞) and satisfying (5.28) with
v0 = V (0) . A similar argument for ψ0 shows that

0 <
ψ0(τ ;V (0))

τ
− Λ0(V (0)) <

∫ ∞
τ

1

ξ2
dξ =

1

τ
, 0 < τ <∞ . (5.83)

We proceed to show (5.73). Fix ε > 0 and select τ = (3/ε) and ᾱ = εν
3 . If we restrict ϕ0 ∈ [0, ᾱ]

then (5.77), (5.78) imply that the interval

[0, τ ] ⊂ [0, ξ∗(ϕ0)] ⊂ [0, T (ϕ0, V (ϕ0)))
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Figure 2: Bifurcation curves for statics and dynamics: g(x) = 1
2x

2 , h(x) = (x−1) ln(x), Trad(0) = 0.

Proposition 5.6 then implies, by restricting α further (if necessary), that for ϕ0 ∈ [0, α]∣∣∣ψ(τ ;ϕ0, V (ϕ0))

τ
− ψ0(τ ;V (0))

τ

∣∣∣ < ε

3
. (5.84)

Then combining (5.84), (5.82) and (5.83) we arrive at the desired

|Λ(ϕ0, V (ϕ0))− Λ0(V (0))| < ε .

We next use the scaling transformation (5.5) to re-express the inequalities (5.82) and (5.80) into
the forms

0 <
ϕ(s)

s
− Λ(ϕ0, V (ϕ0)) <

ϕ0

s
, 0 < s ≤ σ(ϕ0, V (ϕ0)) , (5.85)

0 <
ϕ(s)

s
− ϕ̇(s) <

ϕ0

s
, 0 < s ≤ σ(ϕ0, V (ϕ0)) . (5.86)

From these, in conjunction with (5.73), we deduce (5.74) and (5.76). Finally, (5.75) follows by
passing to the limit ϕ0 → 0+ in (5.77) using (5.85) and (5.86).

Remark 5.8. Given a relation Trad(0;ϕ0, v0) = G(ϕ0), with G continuous at ϕ0 = 0, Theorem 5.7
states that the critical point for a cavity with content is given by

Λ0(h′−1(G(0))) = lim
ϕ0→0+

Λ(ϕ0, h
′−1(G(ϕ0))) . (5.87)

For a stress-free cavity (G(ϕ0) ≡ 0) the result (5.87) means that

lim
ϕ0→0+

Λ(ϕ0, H) = Λ0(H) = λcr ,
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where λcr is the critical stretching associated with cavitating solutions for equilibrium elasticity
analyzed in [2, Section 7.5]; see also Section 5.3.2. Thus, the critical values of the dynamic and
equilibrium bifurcation diagrams (in the stress-free case) coincide. In Fig. 2 the bifurcation dia-
grams for the dynamic and the equilibrium radial elasticity are compared numerically for stress-free
cavities.

6 Conclusions, open problems

As already mentioned, this article complements [18, 19] and completes a theory of dynamically
cavitating weak solutions for (1.2), the equations of dynamic, radial elasticity for isotropic materials.
The solutions are self-similar and satisfy (1.4), (1.5) and (1.6). The emerging solution is a regular
weak solution of the equations of radial elasticity, which consists of an opening cavity at the center,
followed by a smoothly varying part, and then by a precursor to the cavity shock, that connects
the smooth part of the solution to a uniform deformation at the far field.

There are two techniques for constructing the wave pattern that forms the cavitating solution.
According to one approach, introduced in [18] and followed here, one starts from the cavity center
and proceeds to connect through a shock to the uniformly deformed state. An alternative, followed
in [19], is to start from the outer part of the wave, the uniform deformation at the far field, and
construct a wave pattern followed by a shock and the smooth part of the cavitating solution,
using a shooting argument to guarantee that the radial Cauchy stress achieves the value zero (and
thus a cavity) at the center. Both techniques have their advantages, however the first approach
provides a way of handling any cavitating solution, and it serves as a starting point to carry out
the analysis of the dynamic bifurcation curve. It turns out that there is a critical stretching λcr
for obtaining cavitating solutions and it coincides with the critical stretching predicted by the
associated equilibrium elasticity problem.

The resulting solution offers a striking example of non uniqueness for the equations of radial
isotropic elastodynamics, because, as noted in [18, Thm 7.2], the total mechanical energy of the so-
lution with the cavity is less than the total energy of the homogeneous deformation, In the parlance
of conservation law theory, this provides an example of non-uniqueness of entropy weak solutions
(for polyconvex energies) due to point-singularities at the cavity. As opening a cavity decreases the
energy, this provides an autocatalytic mechanism for material failure. This paradox was resolved
in [8], where the question is raised whether remaining at the level of weak solutions is sufficient
for describing singular phenomena like cavitation or shear bands, that lie at the limits (perhaps
even outside) of continuum modeling. The notion of singular limiting induced by continuum (slic)-
solution is introduced, according to which a singular solution is a slic-solution if it can be realized as
limit of spatial averagings of the singular weak solution. This definition is tested for the cavitating
solution, and it turns out that local spatial averaging produces a surface energy cost at the opening
cavity that renders the uniform deformation the energetically preferred solution (see [8]).

An important open problem is thus to come up with a solution concept that accounts for surface
energies on singular objects. The calculus of variations literature has done steps in this direction
(e.g. [17, 9] and references therein) but there is currently no available notion of solution that
accounts for surface energies on singular objects and is applicable at the dynamic level.

Another open problem is the following: Despite the existing constructions of cavitating weak
solution obtained in [18, 19] and here, there is no simple understanding of the mechanism of loss of
stability of the uniform deformation that leads to cavitation, or how such a criterion relates to the
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critical stretching computed here. This is an important research direction for the dynamic problem
that needs to be understood.

7 Appendix

7.1 Gradients of radial functions

Consider a radial function y : Rd → Rd of the form

y(x) = w(R)
x

R
, R := |x| with w(R) : (0,∞)→ R . (7.1)

Theorem 7.1 (J. Ball [2]). Let d > 1, let 1 ≤ p <∞ and y be given by (7.1). Then:

(i) y ∈ Lploc(R
d) if and only if∫ ρ

0
Rd−1|w(R)|pdR <∞ for all ρ ∈ (0,∞) .

(ii) y ∈W 1,p
loc (Rd) if and only if w(R) is absolutely continuous on (0,∞) and∫ ρ

0
Rd−1

(
|wR|p +

∣∣∣w
R

∣∣∣p)dR <∞ for all ρ ∈ (0,∞) . (7.2)

(iii) If (7.2) holds for (say) ρ = 1 then∣∣w(R)
∣∣pRd−p → 0 as R→ 0. (7.3)

(iv) If y ∈W 1,1
loc (Rd) then

∇y(x) = wR
x⊗ x
R2

+
w

R

(
I− x⊗ x

R2

)
in D′(Rd) and a.e. x ∈ Rd . (7.4)

For the proofs of (i), (ii) and (iv) we refer to [2].
The proof of (iii) for p = 1 goes as follows: Using the identity

w(R)Rd−2 = w(ρ)ρd−2 +

∫ R

ρ

(
ws(s)s

d−2 + (d− 2)
w(s)

s
sd−2

)
ds , for 0 < ρ < R,

we integrate over (0, R) and use Fubini to obtain

w(R)Rd−1 =

∫ R

0

(
wρ + (d− 1)

w

ρ

)
ρd−1dρ (7.5)

This identity holds for smooth functions; then using a density argument one establishes the identity
for functions w ∈W 1,1

loc (Rd).
For p = 1, since the integral in (7.2) is finite, we have

F (R) :=

∫ R

0

(
wρ + (d− 1)

w

ρ

)
dρ→ 0 as R→ 0
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(in fact the function F (R) is absolutely continuous as function of R). Hence (iii) follows from (7.5)
for p = 1. The case p > 1 is done by a similar argument.

In order to compute the distributional derivative of ∇y in (iv), one may follow the usual process
of deleting a ball of small radius ε > 0 around the origin, using the formula of integration by parts
and passing to the limit ε → 0. Then, the contribution from the surface of the ball will vanish
precisely because of (7.3) and thus no delta mass appears in the formula (7.4) for dimensions d ≥ 2.

7.2 Stored energies

We collect here certain properties of the stored energies that are used throughout this study. As
already mentioned, frame indifference and isotropy are equivalent to expressing the stored energy
as

W (F ) = Φ(v1, v2, . . . , vd)

where Φ : Rd++ → R is a symmetric function of its arguments and v1, . . . , vd are the eigenvalues of

the positive square root (F>F )
1
2 , the so called principal stretches [1, 22].

The stored energy W (F ) is said to be rank-1 convex if

W (τF + (1− τ)G) ≤ τW (F ) + (1− τ)W (G), (7.6)

for 0 < τ < 1 and for F,G ∈ Md×d
+ such that F − G = ξ ⊗ ν for some nonzero ξ, ν ∈ Rd. If the

inequality in (7.6) is strict, then W is called strictly rank-1 convex.
It is easy to check that for W ∈ C2(Md×d

+ ) rank-1 convexity is equivalent to the Legendre-
Hadamard condition, that is

∂2W (F )

∂Fiα∂Fjβ
ξiναξ

jνβ ≥ 0 , ∀F ∈Md×d
+ and ∀ ξ, ν ∈ Rd − {0}.

For isotropic rank-1 convex functions, the stored energy Φ must satisfy certain monotonicity
properties:

Proposition 7.2 (J. Ball [2]). Let W ∈ C1(Md×d
+ ) be strictly rank-1 convex and isotropic. Then:

(i) ∂Φ
∂vi

(v1, . . . , vd) is a strictly increasing function of vi when vj, j 6= i are kept fixed. If in

addition W ∈ C2(Md×d
+ ) then ∂2Φ

∂v2i
(v1, . . . , vd) > 0.

(ii) The Baker-Ericksen inequalities hold, that is[
vi
∂Φ
∂vi
− vj ∂Φ

∂vj

vi − vj

]
> 0 for i 6= j, vi 6= vj . (7.7)

Throughout this study we work with stored energies of the special form

Φ(v1, v2, ..., vd) =
d∑
i=1

g(vi) + h(v1v2 . . . vd) (H0)
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where the functions g(x) ∈ C3[0,∞) and h(x) ∈ C3(0,∞). One easily computes their derivatives,

Φ11 = g′′(v1) + (v2...vd)
2h′′(v)

Φ12 = (v3...vd)h
′(v) + v1v2(v3...vd)

2h′′(v)

P = Φ12 +
Φ1 − Φ2

v1 − v2
=
g′(v1)− g′(v2)

v1 − v2
+ (v3...vd)vh

′′(v)

Φ111 = g′′′(v1) + (v2...vd)
3h′′′(v)

Φ112 = v2(v3...vd)
2
[
2h′′(v) + vh′′′(v)

]
.

where v = v1v2...vd.
Due to the form of the principal stretches for radial motions (see (7.4)), in the problem of

cavitation it is often needed to work for (v1, ..., vd) taking values of the form (a, b, ..., b) or on the
diagonal (b, b, ..., b). The symmetry of Φ entails certain properties on the diagonals:

∂Φ

∂vi
(a, b, ..., b) =

∂Φ

∂vj
(a, b, ..., b) for i, j = 2, ...d, i 6= j, ∀a, b > 0 (7.8)

∂Φ

∂v1
(b, b, ..., b) =

∂Φ

∂vj
(b, b, ..., b) for j 6= 1, ∀b > 0 (7.9)

When working with stored energies computed along the sets (a, b, ..., b) we will often use the short
hand notation

Φ1(a, b) ≡ ∂Φ

∂v1
(a, b, ..., b) , Φ2(a, b) ≡ ∂Φ

∂vj
(a, b, ..., b) , j = 2, ..., d

Φ11(a, b) ≡ ∂2Φ

∂v2
1

(a, b, ..., b) , Φ12(a, b) ≡ ∂2Φ

∂v1∂vj
(a, b, ..., b) , j = 2, ..., d

(7.10)

and so on.
The quantity

P (a, b) :=

{
Φ12(a, b, ..., b) + (Φ1−Φ2)(a,b,...,b)

a−b a < b

Φ11(b, b, . . . , b), a = b

appears in the defining differential equation (3.3). Using (7.10) one checks that

lim
a→λ−
b→λ+

P (a, b) = lim
a→λ−
b→λ+

Φ11(a, b, . . . , b) = Φ11(λ, . . . , λ) (7.11)

and thus P (a, b) is continuous up to the diagonal on the set {(a, b) : 0 < a ≤ b}. Furthermore,
using (7.8), (7.9) and Taylor expansions around the diagonal we easily see that

lim
a→λ−
b→λ+

P (a, b)− Φ11(a, b)

a− b
=

1

2

(
Φ112(λ, λ)− Φ111(λ, λ)

)
. (7.12)
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We list some formulas based on (H0) that are used in the text:

Φ11(a, b) = g′′(a) + b2d−2h′′(abd−1)

Φ12(a, b) = bd−2h′(abd−1) + ab2d−3h′′(abd−1)

P (a, b) = Φ12 +
Φ1 − Φ2

a− b
=
g′(a)− g′(b)

a− b
+ ab2d−3h′′(abd−1)

Q(a, b, s) = s2 − Φ11 = s2 −
[
g′′(a) + b2d−2h′′

(
abd−1)

]
Φ111(a, b) = g′′′(a) + b3d−3h′′′(abd−1)

Φ112(a, b) = b2d−3
[
2h′′(abd−1) + abd−1h′′′(abd−1)

]
R(a, b, s) =

{
Φ1(a,b)−Φ1(b,b)

a−b − s2, a < b

Φ11(b, b)− s2, a = b

=

{(
g′(a)−g′(b)

a−b

)
+ b2d−2

(
h′(abd−1)−h′(bd)

abd−1−bd

)
− s2, a < b

g′′(b) + b2d−2h′′(bd)− s2, a = b .

List of Hypotheses. For the reader’s convenience, we collect the hypotheses used in the analysis
of the dynamic bifurcation problem:

Φ(v1, v2, ..., vd) =
d∑
i=1

g(vi) + h(v1v2 . . . vd) , g ∈ C3[0,∞) , h ∈ C3(0,∞) (H0)

g′′(x) > 0, h′′(x) > 0 , lim
x→0

h(x) = lim
x→∞

h(x) = +∞ (H1)

g′′′(x) ≤ 0, h′′′(x) < 0 (H2)

lim
x→∞

(
g′(x)

xd−2

)
= γ ≥ 0 (H3)

h′(x)→ −∞ as x→ 0+ , h′(x)→ +∞ as x→ +∞ (H4)

Φ11(x, x) = g′′(x) + x2d−2h′′(xd) ≥ ν2 > 0 . (H5)

(H0)-(H3) and (H4)2 play a role in the existence of a weak solution with cavity, while, in addition to
them, (H4)1 and (H5) are used in the dynamic bifurcation problem. An example of stored energy
that satisfies (H0)-(H5) is :
Case d ≥ 3: g(x), h(x) in (H0) are selected by

g(x) =

K∑
k=1

ak(x+ εk)
αk with 1 < αk ≤ 2 , ak, εk > 0 , (7.13)

and

h(x) =

M∑
m=1

bmx
βm +

N∑
n=1

cnx
−µn with 1 < βm ≤ 2 , µn > 0 , bm, cn > 0 . (7.14)

Case d ≥ 2: g(x) is selected by

g(x) = ax+

K∑
k=1

bk
(x+ εk)αk

with αk, εk, bk > 0 , a ≥ 0 (7.15)
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while h(x) is the same as in (7.14).
We note that εk, k = 1, . . . ,K, in (7.13) and (7.15), are chosen positive in order to satisfy

the requirement that g ∈ C3[0,∞). Thus, g′′(x) cannot blow up as x → 0+ in view of the
requirement that εk > 0. This restricts the class of stored energies as compared to the class
of Ogden materials [11]; see also [2, p.593]. Also we note that h(x) defined in (7.14) satisfies
lim supx→∞ h

′′(xd)x2d−2 > 0 for d ≥ 2 and this together with the fact that g′′(x) > 0, x ∈ [0,∞),
gives (H5).

In section 5.3.2, we also used the hypotheses

d

dx

(
h′(xd) + g′(x)x1−d) > 0, lim sup

x→0+

(h′(x)x) < 0 (H6)(
g′(x)x

)′
> 0 (H7)(

g′′(x)x
)′ ≥ 0 (H8)

These play a very limited role, solely in establishing bounds for the critical stretching λcr of the
equilibrium elasticity critical stretching. Namely, (H6) and (H7) are used for obtaining the bound
(5.48), while (H8) is used in the derivation of the lower bound (5.49). For stored energies of class
(H0), (H7) expresses the Baker-Ericksen inequality (7.7).

7.3 Numerical computations

We now briefly discuss the numerical computation used to plot the graphs of v(s ;ϕ0, H) in Fig.1
and the bifurcation curves in Fig.2. To obtain the solution (ϕ, v)(s ;ϕ0, v0) of (3.14) we perform
numerical computations employing the original (equivalent) system (3.4). As (3.4) has a geometric
singularity at the origin, we initiate the solution using an analytical argument to depart from the
singularity at s = 0, and once we are off the singularity we continue by using a numerical solver.
Below is the explanation of the approach used.

If (ϕ, v)(s ;ϕ0, v0) solves (3.14) then

(a, b)(s ;ϕ0, v0) = (ϕ̇, ϕs )(s ;ϕ0, v0)

solves (3.4) and satisfies
lim
s→0+

sb(s) = ϕ0 , lim
s→0+

(abd−1)(s) = v0 .

Moreover, in view of (H3),

c0 := lim
s→0+

d

ds

(
ϕ̇(ϕs )d−1

)
= lim

s→0+
v̇(s) =

(d− 1)γ0

ϕ0h′′(v0)
, γ0 =

{
γ , d ≥ 3

γ − g′(0), d = 2 .

Thus
d

ds

(
ϕd(s)

)
= d
[
ϕ̇ϕd−1

]
(s) = d

(
v0s

d−1 + c0s
d + o(sd)

)
for s << 1 (7.16)

and hence

ϕ(s) = d

√
ϕd0 + v0sd +

( d

d+ 1

)
c0sd+1 + o(sd) for s << 1. (7.17)
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Given ϕ0, v0 > 0, we construct the solution (ϕ, v)(s ;ϕ0, v0) as follows: We pick a sufficiently
small s0 > 0 and select the approximate values at s = s0 > 0 (following (7.16), (7.17)) by

b̂(s0) =
1

s0

d

√
ϕd0 + v0sd0 +

( d

d+ 1

)
c0s

d+1
0

â(s0) =
(
v0s

d−1 + c0s
d
)(
s0b̂(s0)

)1−d
.

We use these as initial data at s0 and then solve numerically (3.4) (using the standard MAT-
LAB solver ode15) on the interval [s0, T̂ ), where T̂ is the maximal interval of existence of the
approximate solution (â, b̂). At s = T̂ computations break down due to the singularity Q = 0.

We construct the dynamic bifurcation curve in Fig.2 as follows. For a stored energy Φ with
g(x) = 1

2x
2, h(x) = (x− 1) ln(x), we fix v0 = H, where H > 0 is the unique number that satisfies

h′(H) = 0 corresponding to a stress free cavity. Then, we pick ϕ0 ∈ [0.05, 2.7] and s0 > 0 and
compute the numerical solution

{(ân, b̂n)(s0, ϕ0, H)}Nn=0 , on the mesh s0 < s1 < · · · < sN = T̂ ,

that approximates (â, b̂)(s ; s0, ϕ0, H) as described in the previous paragraph. Finally, we determine
the point sn∗ ∈ (s0, sN ] that best fits the condition

sn∗ ≈

√
Φ1(ân∗ , b̂n∗)− Φ1(̂bn∗ , b̂n∗)

ân∗ − b̂n∗
≈ σ(ϕ0, V (ϕ0)) ,

which corresponds to the Rankine-Hugoniot condition. This in turn provides the approximate value
of the stretching

Λ(ϕ0, H) ≈ b̂n∗(s0, ϕ0, H) .

This procedure is repeated for a sequence of values ϕ0 values in the interval [0.05, 2.7] and gives
the dynamic bifurcation curve in Fig.2.

The bifurcation curve for elastostatics (corresponding to the boundary value problem (5.42) in
Section 5.3.2) is constructed in an analogous fashion. The only difference is that solutions are now
computed for the modified system (3.4) (obtained by replacing the term s2 − Φ11 in (3.4) by the
term −Φ11) on the interval (s0, 1]. The value b̂(1; s0, ϕ0, H) then gives the stretching λ(ϕ0, H) at
the boundary of the unit ball. The curve in Fig.2 is the graph of λ(ϕ0, H) with ϕ0 ∈ [0.05, 2.7].
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