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Abstract

This article deals with relaxation approximations of nonlinear systems of hyperbolic balance laws.
We introduce a class of relaxation schemes and establish their stability and convergence to the
solution of hyperbolic balance laws before the formation of shocks, provided that we are within
the framework of the compensated compactness method. Our analysis treats systems of hyperbolic
balance laws with source terms satisfying a special mechanism which induces weak dissipation in
the spirit of Dafermos [11], as well as hyperbolic balance laws with more general source terms. The
rate of convergence of the relaxation system to a solution of the balance laws in the smooth regime
is established. Our work follows in spirit the analysis presented in [1, 14] for systems of hyperbolic
conservation laws without source terms.

1 Introduction

Relaxation approximations of hyperbolic balance laws is of essence for the investigation of models
arising in continuum mechanics and kinetic theory of gases, and serve as a ground stage for the
design of numerical schemes for hyperbolic balance laws. In this article we introduce a class of
relaxation schemes for the approximation of solutions to the hyperbolic balance law

∂tu+
d∑
j=1

∂xjFj(u) = G(u), u ∈ Rn, (x, t) ∈ Rd × [0,∞) (1.1)

and address the issues of stability and convergence.

The class of relaxation schemes introduced in this work are of the form
∂tu+

d∑
j=1

∂xjvj = 0

∂tvi +Ai∂xiu = −1

ε

(
vi − Fi(u) +Ri(x, t)

)
, i = 1, . . . , d

(1.2)

∗Department of Mathematics, University of Massachusetts, Amherst, MA 01003, USA
†Department of Mathematics, University of Maryland, College Park, MD 20742, USA

1



with vi ∈ Rn, Ai symmetric, positive definite matrix, and

Ri(x, t) =
1

d

∫ xi

G(u(x1, . . . , xi−1, z, xi+1, . . . , xd, t)) dz. (1.3)

Excluding vi for all i = 1, . . . , d from the equation (1.2)1 we obtain

∂tu+

d∑
j=1

∂xjFj(u) = G(u) + ε
( d∑
j=1

Ajuxjxj − utt
)

(1.4)

that approximates the system of balance laws (1.1). For the relaxation approximations considered
in this work the stabilization mechanism is the regularization by the wave operator in (1.4).

The convergence properties of relaxation systems and associated relaxation schemes for scalar
conservation laws are presently well understood (see [2, 8, 14, 17]). When the zero-relaxation limit
is a system of conservation laws, the dissipative effect of relaxation is often subtle to capture, yet
there is a vast literature on convergence results in that direction (see [1, 23, 21, 28, 29] and the
references there rein).

By contrast, the relaxation approximation of nonlinear systems of hyperbolic balance laws
presents major additional challenges and it is the subject of current intense research investigation.
It is well known that standard methods that solve correctly systems of conservation laws can fail
in solving systems of balance laws, especially when approaching equilibria or near to equilibria
solutions. In addition, standard approximating procedures produce often unstable methods when
they are applied to coupled systems of conservation or balance laws. Even at the theoretical level,
the presence of the production term (source term) in the equation results to the amplification in
time of even small oscillations in the solution. Due to these challenges special mechanisms that
induce dissipation are often desirable and have been proven effective in obtaining long-term stability
(cf. Dafermos [11], [12]).

In the present article we identify a class of relaxation schemes suitable for the approximation of
solutions to certain systems of hyperbolic balance laws arising in continuum physics. The relaxation
schemes proposed in our work provide a very effective mechanism for the approximation of the
solutions of these systems with a very high degree of accuracy.

The main contribution of the present article to the existing theory can be characterized as
follows:

• A new class of relaxation schemes (1.2) is introduced. The novelty of the relaxation systems
proposed in this work lies in the introduction of the global term {Ri(x, t)} in (1.2)-(1.3).
The presence of this term in the relaxation system allows us to relax both the flux and the
antiderivative of the source term simultaneously. We refer the reader to the article [19], where
a relevant idea was proposed for the numerical treatment of shallow water equations. The
present article is the first step towards the construction of fully discrete schemes and the
development of numerical methods for the approximation of solutions to complex nonlinear
multidimensional systems of hyperbolic balance laws arising in applications. Our analysis
provides a rigorous proof of the relaxation limit and a rate of convergence before the formation
of shocks.

• A comparison is presented between the relaxation system introduced here and an alternative
relaxation system for which the source term G(u) appears in the right-hand side of the first
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equation (see (7.1) in Section 6). Note, dealing with (7.1) one faces arduous challenges. More
specifically, the time derivative of the source term appears in the energy functional posing
enormous challenges in the analysis, an additional hypothesis is required for the establishment
of stability (see (H7), Section 6), the issue of compactness is problematic.

• The presence of a source term in our system requires us to modify the relative entropy
method significantly. The modified relative method presented in this work relies on a relative
potential (Section 8). The introduction of this concept is required in order to deal with the
source term G which typically satisfies no growth conditions. The relative potential assists in
“tracking” the contribution of the source term; it becomes a part of a Lyapunov functional
which monitors the evolution of the difference of the solutions and enables us to establish a
convergence rate of order O(ε2). In the case of the general source G the terms associated with
the source are treated as error (cf. Section 6.4).

The reader should contrast the relaxation system presented in this work with other relaxation
systems proposed in the literature [16, 17], where relaxation approximations to hyperbolic balance
laws were proposed and rigorously established. In [16] relaxation approximations are constructed
by the introduction of special variables the so-called internal variables. In that setting applications
to physical systems in elasticity and combustion theory are presented. In the former case, relaxation
is introduced via stress approximation, whereas in the latter case via approximation of pressure.
Reference [17] treats the Cauchy problem for 2 × 2 semilinear and quasilinear hyperbolic systems
with a singular relaxation term and presents the convergence to equilibrium of the solutions of
these problems as the singular perturbation parameter tends to 0.

In the center of our analysis lies the entropy structure of the balance law and the dissipative
nature of the source term. The main ingredients of our approach can be formulated as follows:

• The representation of the global term R in the formulation of the relaxation system enables
us to obtain the stability estimates in Section 3. These estimates are used subsequently to
establish the stability of the relaxation approximations and in fact justify the dissipative
character of our systems.

• The entropy structure of the balance law provides the basis for the use of the compensated
compactness method. Recall that a pair of functions η = η(u), q = q(u) are called the
entropy-entropy flux pair if (η, q) solve the linear hyperbolic system

Dq = DηDF.

In Section 5, we show that the relaxation approximations satisfy

∂tη(uε) + ∂xq(u
ε) ⊂ compact set of H−1loc (O)

for a certain class of entropy-entropy flux pairs η− q, which is one of the main ingredients for
the establishment of convergence results within the compensated compactness method (cf.
Serre [24]).

• The Lyapunov functional construction in Section 8 relies on the relative entropy via a Chapman-
Enskog-type expansion and is used to provide a simple and direct convergence framework
before formation of shocks as well as suitable error estimates.
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• A physically motivated dissipation mechanism associated with the source term in (1.1). The
concept of weak dissipation for hyperbolic balance laws was introduced by Dafermos in [11].
The reader may contrast the result of Theorem 5.3.1 for weakly dissipative source terms with
Theorem 5.4.1 which corresponds to the case of a general source.

The outline of our article is as follows: In Section 2 we present the basic notation and hypothesis.
In Section 3 we present the stability estimates which yield the stability of the relaxation systems.
The compactness properties of the approximate solutions are discussed in Section 4. Section 5 is
devoted to error estimates for smooth solutions via the relative entropy method as well as proofs
of convergence. The multidimensional case is treated in Section 7. Section 8 presents applications
in elasticity and combustion.

2 Notation and Hypotheses

For the convenience of the reader we collect in this section all the relevant notation and hypotheses.
Here and in what follows:

1. G,R, Fi, i = 1, . . . , d denote the mappings G,R, Fi : Rn → Rn. In our presentation,
G(u), R(u), Fi(u) are treated as column vectors.

2. D denotes the differential with respect to the state vectors u ∈ Rn. When used in
conjunction with matrix notation, D represents a row operation:

D = [∂/∂u1, . . . , ∂/∂un].

2.1 Entropy Structure

Some additional assumptions on the system (1.1) read:

• The system (1.1) is equipped with a globally defined entropy η(u) and corresponding fluxes
qi(u), i = 1, . . . , d, such that

η : Rn → R is strictly convex,

Dη(u)DFi(u) = Dqi(u)

β I ≤ D2η(u) ≤ 1
2αI, u ∈ Rn, for α, β > 0 ,

η(u) ≥ η(0) = 0, Dη(0) = 0.

(H1)

We recall that 2×2 as well as physical systems of hyperbolic conservation laws are always equipped
with an entropy-entropy flux pair. The same holds true for symmetric hyperbolic systems [12].

2.2 Subcharacteristic condition

The Whitham relaxation subcharacteristic condition presented below will be essential for the dissi-
pativiness of our system [2, 12, 15, 17].
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• (Case d = 1. Systems with a strictly convect entropy).

For α > 0 in (H1) there exists ν > 0 and symmetric, positive definite matrix A such that

1
2

(
AD2η(u) + D2η(u)A

)
− αDF (u)>DF (u) ≥ νI , u ∈ Rn. (H2)

The positivity of this term is required for dissipativiness in Lemma 3.1.1.

• (General case d ≥ 1. Systems with a strictly convect entropy).

For α > 0 in (H1) there exists ν > 0 and symmetric, positive definite matrices Aj , j = 1, . . . , d
such that

1
2 ξ
>
j

(
AjD

2η(u) + D2η(u)Ai
)
ξj − α

∣∣∣∣ d∑
i=1

DF (u)>ξj

∣∣∣∣2 ≥ ν d∑
i=1

|ξj | ,

∀ξ1, . . . , ξd ∈ Rn, u ∈ Rn.

(H2*)

2.3 Dissipation

The following hypotheses will be relevant to our subsequent discussion.

• The source term G(u) is weakly dissipative in the sense of Definition 2.3.1.

Definition 2.3.1. We say that the source G(u) is weakly dissipative, if

−
(
Dη(u)−Dη(ū)

)(
G(u)−G(ū)

)
≥ 0 , u, ū ∈ Rn. (H3-a)

An alternative condition on the source G, exploited in Theorem 5.4.1, reads:

• Suppose that for every compact set A there exists LA > 0 such that

|G(u)−G(ū)| ≤ LA|u− ū| , u ∈ Rn, ū ∈ A . (H3-b)

Through out the article we use the assumptions that G(0) = 0 and G ∈ C(Rn).

2.4 Source potential

For the weakly dissipative source G we employ an additional assumption that it is a gradient:

• Suppose there exists a potential R(u) : Rn → R such that

G(u) = −DR(u)>

R(u) ≥ R(0) = 0, DR(0)> = 0

|DR(u)| = |G(u)| ≤ CR
(
1 +R(u)

)
, u ∈ Rn.

(H4)
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3 Stability estimates

3.1 Systems with a strictly convex entropy η, d = 1.

The balance law (1.1) for d = 1 reads

∂tu+ ∂xF (u) = G(u), u ∈ Rn (3.1)

and the relaxation model by
∂tu+ ∂xv = 0

∂tv +A∂xu = −1

ε

(
v − F (u) +

∫ x

G
(
u(x, t)

)
dx
) (3.2)

with A symmetric, positive definite matrix. In that case the second order relaxation system (1.4)
reads

∂tu+ ∂xF (u) = G(u) + ε(Auxx − utt). (3.3)

We now consider the hyperbolic system (3.1) that is equipped with the entropy-entropy flux
pair η − q, with η strictly convex, and establish stability results for the relaxation model (3.3).

Lemma 3.1.1. Suppose u ≡ uε(x, t) is a smooth solution to the equation (3.3) on R× [0, T ], η− q
is the entropy-entropy flux pair of (3.1) and ᾱ ∈ R is fixed. Then, the following energy identity
holds

∂t

[
η(u+ εut) + 1

2ε
2ᾱ |ut|2 + ε2ᾱu>xAux

+ ε2u>t

(
1
2 ᾱI−

∫ 1

0

∫ s

0
D2η(u+ ετut) dτds

)
ut

]
+ ∂xq(u)

+ εᾱ
∣∣ut + DF (u)ux

∣∣2 + εu>t

(
ᾱI −D2η(u)

)
ut

+ εu>x

(
D2η(u)A− ᾱDF (u)>DF (u)

)
ux

= ∂x

(
εDη(u)Aux + 2ε2ᾱu>t Aux

)
+ Dη(u)G(u) + 2εᾱu>t G(u).

(3.4)

Proof. Multiplying (3.3) by u>t we obtain

∂t

(
1
2ε|ut|

2 + 1
2εu
>
xAux

)
+ |ut|2 + u>t DF (u)ux

= ∂x

(
εu>t Aux

)
+ u>t G(u).

(3.5)

Similarly, multiplying (3.3) by Dη(u) we get

∂t

(
η(u) + εDη(u)ut

)
+ ∂x q(u)

+ ε
((

D2η(u)ux
)>
Aux − u>t D2η(u)ut

)
= ∂x

(
εDη(u)Aux

)
+ Dη(u)G(u).

(3.6)
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Now, we multiply (3.5) by 2ᾱε, add (3.6) and use the identity

η(u+ εut) = η(u) + εDη(u)ut + ε2u>t

(∫ 1

0

∫ s

0
D2η(u+ ετut) dτ ds

)
ut (3.7)

to deduce (3.4). This proves the lemma.

We now establish the stability of solutions {uε}. For that we will require the matrix A to satisfy
the subcharacteristic condition (H2) and make use of hypotheses (H3-a)-(H4) to control the source
G. In the sequel we will use the notation

ϕ(t) :=

∫
R
|uε|2 + ε2|uεx|2 + ε2|uεt |2 dx (3.8)

with uε denoting a solution of (3.3).

Proposition 3.1.2 (Weakly dissipative source). Let {uε(x, t)} be a family of smooth solutions
to the equation (3.3) on R× [0, T ]. Suppose that u ≡ uε decays fast at infinity and that:

(a1) (H1) holds true, and the positive definite, symmetric matrix A is such that the subcharacte-
ristic condition (H2) is valid.

(a2) The conditions (H3-a) and (H4) for the source G hold true.

Then for all t ∈ [0, T ]

ϕ(t) + ε

∫
R
R(uε(x, t)) dx+

∫ t

0

∫
R
|Dη(u)G(u)|dxdt ≤ C

(
ϕ(0) + ε

∫
R
R(uε(x, 0)) dx

)
(3.9)

with ϕ defined in (3.8) and C = C(A,α, β) > 0 independent of both ε and T .

Proof. By (H1) we have

0 ≤ u>t

(
1
2αI−

∫ 1

0

∫ s

0
D2η(u+ ετut) dτds

)
ut ≤ 1

2α|ut|
2. (3.10)

Then, integrating the identity (3.4), with ᾱ = α, and using hypotheses (H3-a), (H4) we obtain∫
R

(
η(u+ εut) + 1

2ε
2α|ut|2 + ε2αu>xAux + 2εαR(u)

)
dxdt

+

∫ t

0

∫
R
εν|ux|2 + 1

2εα|ut|
2 dxdt

+

∫ t

0

∫
R
εα|ut + DF (u)ux|2 + |Dη(u)G(u)| dxdt

≤
∫
R

(
η(u0 + εu0t) + cε2α|u0t|2 + ε2u0

>
xAu0x + 2εαR(u0)

)
dx

(3.11)

with 1
2 ≤ c ≤ 1. From (H1) it follows that

c1ϕ(t) <

∫
R

(
η(u+ εut) + 1

2αε
2|ut|2 + ε2αu>xAux

)
dx < c2ϕ(t) (3.12)

for some c1, c2 that depend on α, β and A. Then, combining (3.11) and (3.12), we obtain (3.9).
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Proposition 3.1.3 (General source). Let {uε(x, t)} be a family of smooth solutions to the equa-
tion (3.3) on R× [0, T ]. Suppose that u ≡ uε decays fast at infinity and that:

(a1) (H1) holds true, and the positive definite, symmetric matrix A, is such that the subcharacte-
ristic condition (H2) is valid.

(a2) The condition (H3-b) for the source G holds true.

Then,
ϕ(t) ≤ Cϕ(0) , t ∈ [0, T ] (3.13)

with ϕ defined in (3.8) and C = C(A,α, β, T, L) > 0 independent of ε.

Proof. Integrating the energy identity (3.4), with ᾱ = α, and using (H1), (H2) together with
relations (3.10), (3.12) we obtain for τ ∈ [0, T ]

c1ϕ(τ) ≤ c2ϕ(0) +

∫ τ

0

∫
R

(
Dη(u)G(u) + 2εαu>t G(u)

)
dxdt . (3.14)

Since G(0) = 0, (H3-b) implies |G(u)| ≤ L|u| and therefore, in view of (H1),

|Dη(u)G(u) + 2εαu>t G(u)| ≤ αL|u|2 + αε2|ut|2 + αL2|u|2 .

Then (3.8) and (3.14) imply

ϕ(τ) ≤ c
(
ϕ(0) +

∫ τ

0
ϕ(t)dt

)
with c > 0 depending on c1, c2 and L. Then, we conclude (3.13) via the Gronwall lemma.

4 Compactness properties

This section focuses on systems of hyperbolic balance laws with a strictly convex entropy, d = 1.

4.1 Systems with a strictly convex entropy, d = 1.

Starting with a family {uε} smooth solutions of (3.3) on R × [0,∞) the goal in this section is to
control the dissipation measure and to show that

∂tη̄(uε) + ∂xq̄(u
ε) lies in a compact set of H−1loc (R× R+)

for a certain class of entropy-entropy flux pairs (η̄, q̄). In the proof we use Murat’s lemma [22].

Lemma 4.1.1 (Murat’s Lemma [22]). Let O be an open subset of Rm and {φj} a bounded
sequence of W−1,p(O) for some p > 2. In addition let φj = χj + ψj, where {χj} belongs in a
compact set of H−1(O) and {ψj} belongs in a bounded set of the space of measures M(O). Then
{φj} belongs in a compact set of H−1(O).
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In the presence of uniform L∞-bounds the compensated compactness framework (cf. Tartar
[27], DiPerna [13]) guarantees compactness of approximate solutions and implies that, along a sub-
sequence, uε → u a.e. (x, t). In the absence of L∞-bounds, convergence of viscosity approximations
in the literature has been established in the context of elastodynamics by Shearer [25] and Shearer
and Serre [26]. The objective in that context is to establish the reduction of the generalized Young
measure to a point mass and to show strong convergence.

Theorem 4.1.2 (Weakly dissipative source). Let {uε} be a family of smooth solutions of (3.3)
on R × [0, T ] emanating from smooth initial data. The family {uε} is assumed to decay fast at
infinity. Let the hypotheses of Proposition 3.1.2 remain valid so that the stability estimate (3.9)
holds true with η−q entropy-entropy flux pair satisfying (H1), and A a symmetric, positive-definite
matrix subject to (H2). Then, for entropy pairs (η̄, q̄) satisfying

‖η̄‖L∞ , ‖q̄‖L∞ , ‖Dη̄‖L∞ , ‖D2η̄‖L∞ ≤ C (4.1)

and
|Dη̄(v)G(v)| ≤ C

(
M −Dη(v)G(v)

)
, ∀v ∈ Rn , (4.2)

the family {
∂tη̄(uε) + ∂xq̄(u

ε)
}
ε

lies in a compact set of H−1loc (R× [0, T ]). (4.3)

Proof. Let {uε} be a family of smooth solutions of (3.3) on R × [0, T ]. The goal is to control the
dissipation measure and to establish (4.3) for a class of entropy-entropy flux pairs (η, q). It suffices
to establish (4.3) for entropy-entropy flux pairs (η̄, q̄) satisfying (4.1). This class of entropy pairs
has been used in the literature in a different context in order to establish the reduction of the
generalized Young measure to a point mass and to show strong convergence.

Starting from (3.3) we obtain

∂tη̄(uε) + ∂xq̄(u
ε) = ε∂x (Dη̄(uε)Auεx)− ε∂t (Dη̄(uε)uεt )

− εuεx
>D2η̄(uε)Auεx + εuεt

>D2η̄(uε)uεt + Dη̄(uε)G(uε)

:= I1 + I2 + I3 + I4 + I5.

From (3.9) and (4.1), the terms I1, I2 lie in compact set of H−1, and the terms I3, I4 are bounded
in L1. By (3.9) DηG(uε) is bounded in L1 by initial data (due to the weak dissipation assumption)
and therefore by (4.2) the term Dη̄G(uε) is in a bounded set of L1 as well. Therefore, by Murat’s
lemma [22], the sum

∑
Ii lies in a bounded set of W−1,∞.

Following, similar line of argument an analogous result for systems of hyperbolic balance laws
with general source term is established.

Theorem 4.1.3 (General source). Let {uε} be a family of smooth solutions of (3.3) on R× [0, T ]
emanating from smooth initial data. The family {uε} is assumed to decay fast at infinity. Let the
hypothesis of Proposition 3.1.3 remain valid so that the stability estimate (3.13) holds true with
η− q entropy-entropy flux pair satisfying (H1), and A a symmetric, positive-definite matrix subject
to (H2). Then, for entropy pairs (η̄, q̄) satisfying

‖η̄‖L∞ , ‖q̄‖L∞ , ‖Dη̄‖L∞ , ‖D2η̄‖L∞ ≤ C (4.4)

the family {
∂tη̄(uε) + ∂xq̄(uε)

}
ε

lies in a compact set of H−1loc (R× [0, T ]). (4.5)
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Proof. The proof follows similar line of argument as the one in Theorem 4.1.2. Starting from (3.3)
we obtain

∂tη̄(uε) + ∂xq̄(u
ε) = ε∂x (Dη̄(uε)Auεx)− ε∂t (Dη̄(uε)uεt )

− εuεx
>D2η̄(uε)Auεx + εuεt

>D2η̄(uε)uεt + Dη̄(uε)G(uε)

:= I1 + I2 + I3 + I4 + I5.

From (3.13) and (4.4), the terms I1, I2 lie in compact set of H−1, the terms I3, I4 are bounded in
L1, whereas

|I5| = |Dη̄(u)>G(u)| ≤ c|u|2

is by Lemma 3.1.3 bounded in L1. Therefore, by Murat’s lemma [22], the sum
∑
Ii lies in a bounded

set of W−1,∞.

5 Error estimates via the relative entropy method, d = 1

In this section, we establish the convergence of solutions of (3.3) to solutions of (3.1) before the
formation of shocks. In the spirit of [1] we use the modified relative entropy method [12] by
introducing a functional Hrel(ū, uε), which monitors the difference between the solutions ū to
the equilibrium and the solutions uε to the relaxation systems. The presence of the source G in
our work, however, requires us to modify the method significantly. More specifically, in order to
treat the weakly dissipative source G, which satifies typically no growth restrictions, we need to
introduce the relative potential Rrel(ū, uε) (see (5.18) in Section 6.3). This potential becomes part
of a Lyapunov functional monitoring the evolution of the difference between the two sources. In the
case of the general source G the terms associated with the source are treated as error (cf. Section
6.4).

5.1 The decay functional and relative entropy identity.

Let η − q be an entropy-entropy flux pair satisfying (H1). We define the corresponding relative
entropy-entropy flux pair by

Hrel(ū, uε) = η
(
uε + ε(uε − ū)t

)
− η(ū)−Dη(ū)

(
uε + ε(uε − ū)t − ū

)
Qrel(ū, uε) = q(uε)− q(ū)−Dη(ū)(F (uε)− F (ū))

(5.1)

and set the functional

G(ū, uε) = HR(ū, uε)

+ ε2(uε − ū)>t
(
αI −D2η

)
(uε − ū)t

+ ε2α(uε − ū)>xA(uε − ū)x ,

(5.2)

where A is a symmetric, positive definite matrix, α > 0 a fixed constant defined in (H1) and

D2η =

∫ 1

0

∫ s

0
D2η

(
uε + ετ(uε − ū)t

)
dτds . (5.3)
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Lemma 5.1.1 (Relative entropy identity). Let ū, uε be smooth solutions to (3.1), (3.3), re-
spectively. Then, the following energy identity holds

∂t G(ū, uε) + ∂xQ
rel(ū, uε) + εα

∣∣(uε − ū)t + DF (uε)(uε − ū)x
∣∣2

+ ε
{

(uε − ū)>t

(
αI −D2η(uε)

)
(uε − ū)t

}
+ ε
{

(uε − ū)>x

(
D2η(uε)A− αDF (uε)>DF (uε)

)
(uε − ū)x

}
= ∂x

{
ε
(
Dη(uε)−Dη(ū)

)
A(uε − ū)x + 2αε2

(
A(uε − ū)x

)>
(uε − ū)t

}
−
(
D2η(ū)ūx

)>(
F (uε)− F (ū)−DF (ū)(uε − ū)

)
+
(
a1 + a2 + b1 + b2 + 2εα(c1 + c2)

)
+
(
d1 + d2 + 2εαd3

)
,

(5.4)

where
a1 = ε

((
D2η(uε)−D2η(ū)

)
ūt
)>

(uε − ū)t

a2 = −ε
(
Dη(uε)−Dη(ū)

)
ūtt

b1 = ε
((

D2η(uε)−D2η(ū)
)
ūx
)>
A(uε − ū)x

b2 = −ε
(
Dη(uε)−Dη(ū)

)
Aūxx

c1 = ε(Aūxx − ūtt)>(uε − ū)t

c2 = −
((

DF (uε)−DF (ū)
)
ūx
)>

(uε − ū)t

(5.5)

are the error terms, and

d1 =
(
Dη(uε)−Dη(ū)

)
(G(uε)−G(ū))

d2 = G(ū)>
(

Dη(uε)−Dη(ū)−D2η(ū)(uε − ū)
)

d3 =
(
G(uε)−G(ū)

)>
(uε − ū)t .

(5.6)

are the terms associated with the source G.

Proof. By (H1), (3.1), and (3.3) we have

∂t
(
η(uε)− η(ū)

)
+ ∂x

(
q(uε)− q(ū)

)
= ε
(
Dη(uε)Auεxx −Dη(uε)uεtt

)
+Dη(uε)G(uε)−Dη(ū)G(ū) .

(5.7)

Similarly,
∂t(u

ε − ū) + ∂x(F (uε)− F (ū)) = ε(Auεxx − uεtt) +G(uε)−G(ū)

and hence, after multiplying the above identity by Dη(ū), we have

∂t
(
Dη(ū)(uε − ū)

)
+ ∂x

(
Dη(ū)

(
F (uε)− F (ū)

))
=
(
D2η(ū)ūt

)>
(uε − ū) + ∂x

(
Dη(ū)

)
(F (uε)− F (ū))

+ ε
(
Dη(ū)Auεxx −Dη(ū)uεtt

)
+ Dη(ū)(G(uε)−G(ū)) .

(5.8)

The existence of the entropy-pair η − q is equivalent to the property

D2η(v)DF (v) = DF (v)>D2η(v), ∀v ∈ Rn
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and hence, using (3.1), the first term on the right-hand side of (5.8) can be expressed as(
D2η(ū)ūt

)>
(uε − ū) = −

(
D2η(ū)ūx

)>
DF (ū)(uε − ū) +G(ū)>D2η(ū)(uε − ū) .

Combining (5.7), (5.8) and the above identity we obtain

∂t
(
η(uε)− η(ū)−Dη(ū)(uε − ū)

)
+ ∂x

(
q(uε)− q(ū)−Dη(ū)(F (uε)− F (ū))

)
= −

(
D2η(ū)ūx

)>(
F (uε)− F (ū)−DF (ū)(uε − ū)

)
+ ε
(
Dη(uε)−Dη(ū)

)
Auεxx − ε

(
Dη(uε)−Dη(ū)

)
uεtt

+
(
Dη(uε)−Dη(ū)

)(
G(uε)−G(ū)

)
+G(ū)>

(
Dη(uε)−Dη(ū)−D2η(ū)(uε − ū)

)
.

(5.9)

Next, we express the second and third terms on the right-hand side of (5.9) as(
Dη(uε)−Dη(ū)

)
uεtt

= ∂t

((
Dη(uε)−Dη(ū)

)
(uε − ū)t

)
−
(
D2η(uε)(uε − ū)t

)>
(uε − ū)t

−
((

D2η(uε)−D2η(ū)
)
ūt
)>

(uε − ū)t +
(
Dη(uε)−Dη(ū)

)
ūtt(

Dη(uε)−Dη(ū)
)
Auεxx

= ∂x

((
Dη(uε)−Dη(ū)

)
A(uε − ū)x

)
−
(
D2η(uε)(uε − ū)x

)>
A(uε − ū)x

−
((

D2η(uε)−D2η(ū)
)
ūx
)>
A(uε − ū)x +

(
Dη(uε)−Dη(ū)

)>
Aūxx

and observe that

η
(
uε + ε(uε − ū)t

)
= η(uε) + εDη(uε)(uε − ū)t + ε2(uε − ū)>t D2η (uε − ū)t .

Then (5.1), (5.9) and the last three identities imply

∂t

{
Hrel(ū, uε)− ε2(uε − ū)>t D2η (uε − ū)t

}
+ ∂xQ

rel(ū, uε)

+ ε
{(

D2η(uε)(uε − ū)x
)>

(uε − ū)x −
(
D2η(uε)(uε − ū)t

)>
(uε − ū)t

}
= ∂x

{
ε(Dη(uε)−Dη(ū))A(uε − ū)x

}
−
(
D2η(ū)ūx

)>(
F (uε)− F (ū)−DF (ū)(uε − ū)

)
+ a1t + a2t + b1x + b2x + d1 + d2

(5.10)

with the last six terms on the right-hand side of the above identity defined in (5.5)1,2,3,4 and (5.6)1,2.

The identity (5.10) is supplemented by a correction accounting for the fact that the third term
is indefinite. The correcting identity is obtained by multiplying the equation

(uε − ū)t + DF (uε)(uε − ū)x = εA(uε − ū)xx − ε(uε − ū)tt + ε(Aūxx − ūtt)
+ (G(uε)−G(ū))− (DF (uε)−DF (ū))ūx

12



by (uε − ū)t and integrating by parts, which leads to

∂t

{
1
2 ε|u

ε
t − ūt|2 + 1

2 ε(u
ε − ū)>x A(uε − ū)x

}
+ |uεt − ūt|2 +

(
DF (uε)(uε − ū)x

)>
(uε − ū)t

= ∂x

{
ε
(
A(uε − ū)x

)>
(uε − ū)t

}
+ c1t + c2t + d3

(5.11)

with the terms on the right-hand side defined in (5.5)5,6 and (5.6)3.

Finally, multiplying (5.11) by 2αε and adding the resulting identity to (5.10) we obtain (5.4).

5.2 Preliminary estimate of G

In this section we establish a preliminary estimate for the functional G(ū, uε) employed in the proofs
of Theorem 5.3.1 and Theorem 5.4.1. For this purpose we define

Ψ(t) :=

∫
R
|ū− uε|2 + ε2|(ū− uε)x|2 + ε2|(ū− uε)t|2 dx (5.12)

used in our further analysis, where ū, u are smooth solutions to the equilibrium and relaxation
system, respectively.

Lemma 5.2.1. Let ū, uε be smooth solutions of (3.1), (3.2), respectively and suppose that both ū,
uε decay sufficiently fast at infinity. Suppose that:

(a1) (H1) holds true and the positive definite, symmetric matrix A, is such that the subcharacte-
ristic condition (H2) is valid.

(a2) For some M > 0
|D2F (u)| ≤M, |D3η(u)| ≤M, u ∈ Rn.

Then,

(i) There exists c1, c2 > 0 independent of ε > 0 such that

c1Ψ(t) ≤
∫
R
G(ū, uε) dx ≤ c2Ψ(t) . (5.13)

(ii) The functional G(ū, uε) is positive definite and satisfies

d

dt

∫
R
G(ū, uε) dx+ εc̄

∫
R
|uεx − ūx|2 + |uεt − ūt|2 dx

≤ C(T, ū)
(

Ψ(t) + ε2
)

+

∫
R

(
d1 + d2 + 2εαd3

)
dx

(5.14)

with d1, d2, d3 defined in (5.6) and C = C(T, ū) > 0 independent of ε.
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Proof. From (H1) and (5.1)1 we have

β|uε + ε(uε − ū)t − ū|2 ≤ Hrel(ū, uε) ≤ α|uε + ε(uε − ū)t − ū|2 . (5.15)

Also, (H1) and (5.3) imply

αI ≥ αI−D2η = αI −
∫ 1

0

∫ s

0
D2η

(
uε + ετ(uε − ū)t

)
dτds ≥ 1

2αI. (5.16)

Combining (5.2), (5.15), (5.16) and recalling that A is symmetric, positive definite we get (5.13).

Next, integrating (5.4) we use (H2) and (5.16) to conclude

d

dt

∫
R
G(ū, uε) dx+ εc̄

∫
R
|(ū− uε)x|2 + |(ū− uε)t|2 dx

≤
∫
R

{∣∣(D2η(ū)ūx
)>(

F (uε)− F (ū)−DF (ū)(uε − ū)
)∣∣

+
∣∣a1 + a2 + b1 + b2 + 2εα(c1 + c2)

∣∣+ d1 + d2 + 2εαd3

}
dx

(5.17)

By (a3) we have∫
R

∣∣(D2η(ū)ūx
)>(

F (uε)− F (ū)−DF (ū)(uε − ū)
)∣∣ dx ≤ C ‖uε − ū‖2L2

and the error terms in (5.5) are estimated by

‖a1‖L1 ≤ εC ‖ūt‖L∞ ‖u
ε − ū‖L2 ‖uεt − ūt‖L2

‖b1‖L1 ≤ εC ‖ūx‖L∞ ‖u
ε − ū‖L2 ‖uεx − ūx‖L2

‖a2‖L1 ≤ εC ‖ūtt‖L2 ‖uε − ū‖L2

‖b2‖L1 ≤ εC ‖ūxx‖L2 ‖uε − ū‖L2

and
‖εc1‖L1 ≤ ε2C

(
‖ūtt‖L2 + ‖ūxx‖L2

)
‖uεt − ūt‖L2

‖εc2‖L1 ≤ εC ‖ūx‖L∞ ‖u
ε − ū‖L2 ‖uεt − ūt‖L2 ,

where C is a generic constant that depends on α, M and norms of ū. Then, by (5.13), (5.17) and
the above estimates we obtain (5.14).

5.3 Error estimates. Weakly dissipative source G(u)

To establish the convergence result for weakly dissipative source we introduce the relative potential

Rrel(ū, uε) := R(uε)−R(ū)−DR(ū)(u− ū) ≥ 0 (5.18)

which is well-defined whenever G ∈ C1(Rn). As we will see in the next theorem the smoothness
of G, which in our work is in general assumed to be C(Rn), will have an impact on the rate of
convergence.

Theorem 5.3.1. Let ū(x, t) be a smooth solution of the equilibrium system (3.1), defined on Rd ×
[0, T ]. Let {uε} be a family of smooth solutions of the relaxation system (3.2) on R× [0, T ]. Suppose
that both ū and uε decay sufficiently fast at infinity and that:
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(a1) (H1) holds true and the positive definite, symmetric matrix A, is such that the subcharacte-
ristic condition (H2) is valid.

(a2) For some M > 0
|D2F (u)| ≤M, |D3η(u)| ≤M, u ∈ Rn.

(a3) The conditions (H3-a), (H4) on the source term hold true.

Then for all t ∈ [0, T ]

Ψ(t) + ε

∫
R
R(uε(x, t))dx ≤ C

(
Ψ(0) + ε

∫
R
R(uε(x, 0))dx+ ε

)
(5.19)

with C = C(ū, α, β, ν,M, T ) > 0 independent of ε.

If, in addition, G ∈ C2(Rn) then for all t ∈ [0, T ]

Ψ(t) + ε

∫
R

[
Rrel(ū, uε)

]
(x, t) dx ≤ C

(
Ψ(0) + ε

∫
R

[
Rrel(ū, uε)

]
(x, 0) dx+ ε2

)
. (5.20)

Proof. By (H1), (H3-b), and (5.6) we obtain

d1 ≤ (Dη(uε)−Dη(ū))(G(uε)−G(ū)) ≤ 0

d2 ≤ α ‖G(ū)‖L∞ |u
ε − ū|2

εd3 ≤ −ε∂tR(uε) + εCR(1 +R(uε))|ūt|+ ε|G(ū)||uεt − ūt|.
(5.21)

Then, combining (5.14) and (5.21) we obtain

d

dt

∫
R
G(ū, uε) dx+ εc̄

∫
R
|uεx − ūx|2 + |uεt − ūt|2 dx

≤ C
(

Ψ(t) + ε2
)

+ 2εαCR

(
‖ūt‖L1 + ‖ūt‖L∞

∫
R
R(uε) dx

)
− 2εα

d

dt

∫
R
R(uε) dx+

2εα2

c̄

∫
R
|G(ū)|2 dx+

εc̄

2

∫
R
|uεt − ūt|2 dx.

(5.22)

Integrating the above inequality, and using (H1), (H4), (5.13) and (5.12), we obtain

Ψ(t) + ε

∫
R
R(uε(x, t))dx

≤ C
(

Ψ(0) + ε

∫
R
R(uε(x, 0))dx+

∫ t

0

{
Ψ(s) + ε

∫
R
R(uε(x, s)) dx

}
ds+ εt+ ε2t

)
and conclude (5.19) via the Gronwall lemma.

Suppose now that G ∈ C2(Rn). Then, using (H4) and (5.18), we obtain

∂t
(
Rrel(ū, uε)

)
= −G(uε)>uεt +G(ū)>ūt +G(ū)>(uε − ū)t

− (D2R(ū)ūt)
>(uε − ū)

= (G(ū)−G(uε))>uεt − (D2R(ū)ūt)
>(uε − ū) .

(5.23)
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Then, using (H4), (5.6)3 and (5.23), we obtain

d3 =
(
G(uε)−G(ū)

)>
(uε − ū)t

= −∂t
(
Rrel(ū, uε)

)
− (D2R(ū)ūt)

>(uε − ū)− (G(uε)−G(ū))>ūt

= −∂t
(
Rrel(ū, uε)

)
+ ū>t

(
DR(uε)−DR(ū)−D2R(ū)(uε − ū)

)
.

(5.24)

Then, combining (5.14) with (5.21)1,2 and (5.24), we obtain

d

dt

∫
R
G(ū, uε) dx+ εc̄

∫
R
|uεx − ūx|2 + |uεt − ūt|2 dx

≤ C(T, ū)
(

Ψ(t) + ε2
)
− 2εα

d

dt

∫
R
Rrel(ū, uε) dx

+ 2εα

∫
R

{
ū>t
(
DR(uε)−DR(ū)−D2R(ū)(uε − ū)

)}
dx .

(5.25)

Now, we estimate the last term on the right-hand side of (5.25). By assumption on ū there
exists a compact set K ⊂ Rn such that

ū(x, t) ∈ K , (x, t) ∈ R× [0, T ].

Thus, we can take large enough M > 0 such that

K ⊂ BM and |ū(x, t)− v| > 1 for all v ∈ BMC , (x, t) ∈ R× [0, T ], (5.26)

where BM denotes a ball of radius M . Then, since G = −DR ∈ C2(Rn), we obtain

λMG := sup
v∈BM

(
|R(v)|+ |DR(v)|+ |D2R(v)|+ |D3R(v)|

)
<∞ . (5.27)

Fix (x, t) ∈ R× [0, T ]. Suppose u(x, t) ∈ BM . Then by (5.27)

|DR(uε)−DR(ū)−D2R(ū)(uε − ū)| ≤ λMG |uε − ū|2 . (5.28)

Suppose now that uε(x, t) ∈ BMC . Then, by (5.26) we have |uε(x, t)− ū(x, t)| > 1. Hence

0 ≤ R(uε(x, t)) = Rrel(ū, uε) +R(ū) + DR(ū)(u− ū)

≤ max(Rrel, |uε − ū|2)
(

1 + 2λMG

)
.

(5.29)

Then, using (5.27), (5.29) and (H4), we obtain

|DR(uε)−DR(ū)−D2R(ū)(uε − ū)|

≤ 2 max(R(uε), |uε − ū|2)
(
|DR(uε)|
R(uε) + 1

+ λMG

)
≤ 2 max(R(uε), |uε − ū|2)

(
CR + λMG

)
≤ C max(Rrel, |uε − ū|2)

(5.30)
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for some C > 0 that depends on λMG and CR.

Since (x, t) is arbitrarily chosen, combining (5.28) and (5.30), we conclude

|DR(uε)−DR(ū)−D2R(ū)(uε − ū)| ≤ C max(Rrel(uε), |uε − ū|2) (5.31)

for all (x, t) ∈ R× [0, T ]. Thus

2εα

∫
R

{
ū>t
(
DR(uε)−DR(ū)−D2R(ū)(uε − ū)

)}
dx

≤ C

(
ε

∫
R
Rrel(ū, uε)dx+ ε

∫
R
|ū− uε|2dx

)
.

(5.32)

Then, integrating the inequality (5.25) in time, and using the (5.13), (5.12), and (5.32), we obtain

Ψ(t) + ε

∫
R

[
Rrel(ū, uε)

]
(x, t) dx

≤ C

(
Ψ(0) + ε

∫
R

[
Rrel(ū, uε)

]
(x, 0)dx

+

∫ τ

0

{
Ψ(τ) + ε

∫
R

[
Rrel(ū, uε)

]
(x, τ)dx

}
dτ + ε2

) (5.33)

which along with the Gronwall lemma implies (5.19).

5.4 Error estimates. General source G(u)

We now consider the source term that satisfies the alternative hypothesis (H3-b).

Theorem 5.4.1. Let ū(x, t) be a smooth solution of the equilibrium system (3.1), defined on R×
[0, T ]. Let {uε} be a family of smooth solutions of the relaxation system (3.2) on R× [0, T ]. Suppose
that both ū and uε decay sufficiently fast at infinity and that:

(a1) (H1) holds true and the positive definite, symmetric matrix A, is such that the subcharacte-
ristic condition (H2) is valid.

(a2) For some M > 0
|D2F (u)| ≤M, |D3η(u)| ≤M, u ∈ Rn.

(a3) The condition (H3-b) on the source term holds true.

Then,
Ψ(t) ≤ C

(
Ψ(0) + ε2

)
, t ∈ [0, T ] (5.34)

with Ψ defined in (5.12) and C = C(ū, α, β, ν,M, T ) > 0 independent of ε.

Proof. Let A ⊂ Rn denote a set such that ū(x, t) ∈ A for every (x, t). Then (H1), (H3-a), (H4)
and (5.6) imply

d1 ≤ |uε − ū||G(uε)−G(ū)| ≤ LA|uε − ū|2

d2 ≤ α ‖G(ū)‖L∞ |u
ε − ū|2

εd3 ≤ εLA|uε − ū||(uε − ū)t| ≤ L2
A|uε − ū|2 + ε2|(uε − ū)t|2 .

(5.35)
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Then, combining (5.12), (5.14) and (5.35), we obtain

d

dt

∫
R
G(ū, uε) dx+ εc̄

∫
R
|uεx − ūx|2 + |uεt − ūt|2 dx ≤ C

(
Ψ(t) + ε2

)
.

Integrating the above inequality, and using (5.13), we obtain

Ψ(t) ≤ C
(

Ψ(0) +

∫ t

0
Ψ(s) ds+ ε2

)
and conclude (5.34) via the Gronwall lemma.

6 Multidimensional case

In this section we state our results for multidimensional systems. The proofs of these theorems
follow similar line of argument as the ones presented in the earlier parts of this article, and therefore
are here omitted.

We define

ϕ(t) :=

∫
Rd

|uε|2 + ε2|Duε|2 + ε2|uεt |2 dx (6.1)

Ψ(t) :=

∫
R
|ū− uε|2 + ε2|Dū−Duε|2 + ε2|(ū− uε)t|2 dx (6.2)

which are used in the next two subsections.

6.1 Systems with weakly dissipative source G, d ≥ 1

The first result is the analog of Proposition 3.1.2 on stability.

Proposition 6.1.1. Let {uε(x, t)} be a family of smooth solutions to the system (1.4) on Rd×[0, T ].
Suppose that u ≡ uε decays fast at infinity and that:

(a1) (H1) holds true, and the positive definite, symmetric matrices Aj, j = 1, . . . , d are such that
the subcharacteristic condition (H2*) is valid.

(a2) The conditions (H3-a) and (H4) for the source G hold true.

Then for all t ∈ [0, T ]

ϕ(t) + ε

∫
Rd

R(uε(x, t)) dx+

∫ t

0

∫
Rd

|Dη(u)G(u)|dxdt ≤ C
(
ϕ(0) + ε

∫
Rd

R(uε(x, 0)) dx
)

(6.3)

with ϕ(t) defined in (6.1), R(u) defined in (H4) and C = C(A,α, β) > 0 independent of ε, T .

The next theorem is the analog of compactness Theorem 4.1.3
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Theorem 6.1.2. Let d ≥ 1. Let {uε} be a family of smooth solutions of (3.3) on Rd × [0, T ]
emanating from smooth initial data. The family {uε} is assumed to decay fast at infinity. Let
the hypotheses of Proposition 6.1.1 remain valid so that the stability estimate (6.3) holds true with
η − q entropy-entropy flux pair satisfying (H1), and Aj, j = 1, . . . , d, symmetric, positive-definite
matrices subject to (H2*). Then for an entropy pair η̄ − q̄ satisfying the growth conditions

‖η̄‖L∞ , ‖q̄‖L∞ , ‖Dη̄‖L∞ , ‖D2η̄‖L∞ ≤ C

and
|Dη̄(v)G(v)| ≤ C

(
M −Dη(v)G(v)

)
, ∀v ∈ Rn

the family

{
∂tη̄(uε) +

d∑
j=1

∂xj q̄j(u
ε)
}
ε

lies in a compact set of H−1loc (Rd × [0, T ]).

The next theorem is the analog of Theorem 5.3.1 on convergence.

Theorem 6.1.3. Let ū(x, t) be a smooth solution of the system (3.1), defined on Rd × [0, T ]. Let
{uε} be a family of smooth solutions of the relaxation system (3.2) on Rd × [0, T ]. Suppose that
both ū and uε decay sufficiently fast at infinity and that:

(a1) (H1) holds true and the positive definite, symmetric matrices Aj, j = 1, . . . , d are such that
the subcharacteristic condition (H2*) is valid.

(a2) For some M > 0

|D2Fj(u)| ≤M, j = 1, . . . , d, |D3η(u)| ≤M, u ∈ Rn.

(a3) The conditions (H3-a) and (H4) for the source term G hold true.

Then for all t ∈ [0, T ]

Ψ(t) + ε

∫
Rd

R(uε(x, t))dx ≤ C

(
Ψ(0) + ε

∫
Rd

R(uε(x, 0))dx+ ε

)
with Ψ defined in (6.2), R(u) defined in (H4) and C = C(ū, α, β, ν,M, T ) > 0 independent of ε.

If, in addition, G ∈ C2(Rn) then for all t ∈ [0, T ]

Ψ(t) + ε

∫
Rd

[
Rrel(ū, uε)

]
(x, t) dx ≤ C

(
Ψ(0) + ε

∫
Rd

[
Rrel(ū, uε)

]
(x, 0) dx+ ε2

)
where

Rrel(ū, uε) := R(uε)−R(ū)−DR(ū)(u− ū) ≥ 0 .
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6.2 Systems with general source G, d ≥ 1

Proposition 6.2.1. Let {uε(x, t)} be a family of smooth solutions to (1.4) on Rd× [0, T ]. Suppose
that u ≡ uε decays fast at infinity and that:

(a1) (H1) holds true, and positive definite, symmetric matrices Aj, j = 1, . . . , d are such that the
subcharacteristic condition (H2*) is valid.

(a2) The condition (H3-b) on the source G holds true.

Then
ϕ(t) ≤ Cϕ(0) , t ∈ [0, T ] (6.4)

with ϕ defined in (6.1) and C = C(A,α, β, T, L) > 0 independent of ε and T .

Theorem 6.2.2. Let d ≥ 1. Let {uε} be a family of smooth solutions of (3.3) on Rd × [0, T ]
emanating from smooth initial data. The family {uε} is assumed to decay fast at infinity. Let
the hypotheses of Proposition 6.2.1 remain valid so that the stability estimate (6.4) holds true with
η − q entropy-entropy flux pair satisfying (H1), and Aj, j = 1, . . . , d, symmetric, positive-definite
matrices subject to (H2*). Then for an entropy pairs η̄ − q̄ satisfying

‖η̄‖L∞ , ‖q̄‖L∞ , ‖Dη̄‖L∞ , ‖D2η̄‖L∞ ≤ C

the family

{
∂tη̄(uε) +

d∑
j=1

∂xj q̄j(u
ε)
}
ε

lies in a compact set of H−1loc (Rd × [0, T ]).

Theorem 6.2.3. Let ū(x, t) be a smooth solution of the system (1.1), defined on R × [0, T ]. Let
{uε} be a family of smooth solutions of the relaxation system (1.2) on Rd × [0, T ]. Suppose that
both ū and uε decay sufficiently fast at infinity and that:

(a1) (H1) holds true and the positive definite, symmetric matrix A, is such that the subcharacte-
ristic condition (H2*) is valid.

(a2) For some M > 0

|D2Fj(u)| ≤M, j = 1, . . . , d , |D3η(u)| ≤M, u ∈ Rn.

(a3) The condition (H3-b) for the source term G holds true.

Then
Ψ(t) ≤ C

(
Ψ(0) + ε2

)
, t ∈ [0, T ]

with Ψ defined in (6.2) and C = C(ū, α, β, ν,M, T ) > 0 independent of ε.
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7 An alternative relaxation model

In this section we consider an alternative relaxation model for the system of hyperbolic balance
laws (1.1) given by 

∂tu+

d∑
j=1

∂xjvj = G(u)

∂tvi +Ai∂xiu = −1

ε

(
vi − Fi(u))

)
, i = 1, . . . , d

(7.1)

with u, vi ∈ Rn and Ai symmetric, positive definite matrix. Excluding vi from the equation (7.1)1
and assuming G ∈ C1(Rn), we obtain

∂tu+
d∑
j=1

∂xjFj(u) = G(u) + ε∂t(G(u)) + ε
( d∑
j=1

Ajuxjxj − utt
)

(7.2)

that approximates the system of balance laws (1.1). We remark that the treatment of such relax-
ation systems presents several challenges. More specifically, the time derivative of the source term
appear in the energy functional posing enormous difficulties in the analysis, an additional hypot-
hesis is required for the establishment of stability (see (H7), Section 6), the issue of compactness
is problematic. In the next two subsections we will study the stability and compactness properties
of solutions to (7.2) in order to point out the advantages of the relaxation model (1.2). We restrict
the analysis to weakly dissipative systems of hyperbolic balance laws equipped with strictly convex
entropy, d = 1.

7.1 Weakly dissipative systems with strictly convex entropy, d = 1

The system (7.2) for d = 1 reads

∂tu+ ∂xF (u) = G(u) + ε∂t(G(u)) + ε(Auxx − utt) (7.3)

where A is symmetric, positive definite matrix. Following the arguments of Lemma 3.1.1 we obtain:

Lemma 7.1.1. Suppose u ≡ uε(x, t) is a smooth solution to the equation (7.3) on R× [0, T ], η− q
is the entropy-entropy flux pair of (3.1) and ᾱ ∈ R is fixed. Then, the following energy identity
holds

∂t

[
η(u+ εut) + 1

2ε
2ᾱ |ut|2 + ε2ᾱu>xAux

+ ε2u>t

(
1
2 ᾱI−

∫ 1

0

∫ s

0
D2η(u+ ετut) dτds

)
ut

]
+ ∂xq(u)

+ εᾱ
∣∣ut + DF (u)ux

∣∣2 + εu>t

(
ᾱI −D2η(u)

)
ut

+ εu>x

(
D2η(u)A− ᾱDF (u)>DF (u)

)
ux

= ∂x

(
εDη(u)Aux + 2ε2ᾱu>t Aux

)
+ Dη(u)

(
G(u) + ε∂t(G(u))

)
+ 2εᾱu>t

(
G(u) + ε∂t(G(u)

)
.

(7.4)
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In our further analysis we will employ the following elementary lemma.

Lemma 7.1.2 (Weak dissipation of a gradient). Suppose η(u) satisfies (H1), and G(u) ∈ C1

satisfies (H3-a), (H4). Then

−DG(u) = D2R(u) ≥ 0 for all u ∈ Rn . (7.5)

In addition, if η̃(u) : Rn → R satisfies D2η̃(u) ≥ 0, then

−D2η̃(u)DG(u) = D2η̃(u)D2R(u) ≥ 0 for all u ∈ Rn . (7.6)

Proof. From (H3-a), (H4) it follows that

−z>D2η(u)DG(u)z = z>D2η(u)D2R(u)z ≥ 0 for all u, z ∈ Rn .

Fix u ∈ Rn. Let (λ, v) be an eignepair of D2R(u). Then the above inequality implies

0 ≤ v>D2η(u)D2R(u)v = λ
(
v>D2η(u)v

)
.

Recalling that D2η(u) > 0 and v 6= 0, we conclude that λ ≥ 0. Hence all eigenvalues of D2R(u) are
nonnegative. Since D2R(u) is a symmetric matrix this is equivalent to D2R(u) ≥ 0.

Next, suppose η̃(u) is a strictly convex function. Then (7.6) follows from the fact that D2η̃,
D2R are symmetric, nonnegative definite matrices.

Remark 7.1.3. Note that the requirement of uniform convexity for η(u) in Lemma 7.1.2 can be
replaced with strict convexity. Thus, when G is a gradient, weak dissipation of G with respect
to some strictly convex entropy automatically yields weak dissipation with respect to any convex
entropy, a property which is not in general satisfied.

To establish the stability of solutions to (7.3) we will employ an additional hypothesis:

• Suppose there exists S : Rn → R such that

Dη(u)DG(u) = −DS(u), u ∈ Rn

S(u) ≥ S(0) = 0 .
(H5)

Remark 7.1.4. We note that the hypothesis (H5) is a severe assumption. It is motivated by the
following observation. Suppose that the entropy η(u) = 1

2 |u|
2, and (H3-a), (H4) hold true. Then,

Dη(u)DG(u) = u>D2R(u) = −DS(u) with S(u) = DR(u)u−R(u) .

Moreover, by Lemma 7.1.2 it follows that D2R ≥ 0 and hence S(u) ≥ S(0) = 0.

Proposition 7.1.5. Let {uε(x, t)} be a family of smooth solutions to the equation (7.3) defined on
R× [0, T ]. Suppose that u ≡ uε decays fast at infinity and that:

(a1) (H1) holds true, and the positive definite, symmetric matrix A is such that the subcharacte-
ristic condition (H2) is valid.
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(a2) The conditions (H3-a), (H4), and (H5) for the source G ∈ C1(Rn) hold true.

Then for all t ∈ [0, T ]

ϕ(t) + ε

∫
R

{
S(uε(x, t)) +R(uε(x, t))

}
dx+

∫ t

0

∫
R
|Dη(u)G(u)| dxdt

≤ C

(
ϕ(0) + ε

∫
R

{
S(uε(x, 0)) +R(uε(x, 0))

}
dx

) (7.7)

with ϕ defined in (3.8) and C = C(A,α, β) > 0 independent of both ε and T .

Proof. Using (H4), (H5) we rewrite the last four terms on the right-hand side of (7.4), with ᾱ = α,
as follows (

Dη(u)G(u) + εDη(u)∂t(G(u)) + 2εu>t G(u) + 2ε2αu>t ∂t(G(u))
)

=
(

Dη(u)G(u)− 2ε2αu>t D2R(u)ut

)
− ε∂t

(
S(u) + 2αR(u)

)
=: I1 + I2.

(7.8)

Since G ∈ C1, by (H1), (H3-a), (H4) and Lemma 7.1.2

αu>t D2R(u)ut ≥ 0 . (7.9)

Thus, by (H3-a) and (7.9) we conclude I1 ≤ 0. Then, integrating the identity (7.4), with ᾱ = α,
and employing hypotheses (H1), (H2), (H3-a), (H4), (H5) along with (3.10), (3.12) and (7.8), we
conclude (7.7).

7.2 Compactness issues

Let {uε} be a family of smooth solutions of (7.3) on R× [0, T ] emanating from smooth initial data.
The family {uε} is assumed to decay fast at infinity. Let the hypotheses of Lemma 7.1.5 remain
valid so that the stability estimate (7.7) holds true with η − q entropy-entropy flux pair satisfying
(H1), and A a symmetric, positive-definite matrix subject to (H2). Let the entropy pairs (η̄, q̄)
satisfy (4.1) and the growth condition holds (4.2). We now show that, in general, one may not
expect compactness from the family {∂tη̄(uε) + ∂xq̄(u

ε)}.
We follow the arguments of Theorem 4.1.2. Starting from (7.3) we obtain

∂tη̄(uε) + ∂xq̄(u
ε) = ε∂x (Dη̄(uε)Auεx)− ε∂t (Dη̄(uε)uεt )

− εuεx
>D2η̄(uε)Auεx + εuεt

>D2η̄(uε)uεt

+ Dη̄(uε)G(uε) + εDη̄(uε)DG(uε)uεt

:= I1 + I2 + I3 + I4 + I5 + I6.

As before from (4.1), (4.2) and (7.7), it follows that the terms I1, I2 lie in compact set of H−1, and
the terms I3, I4, I5 are bounded in L1. However, the term I6 is, in general, neither in a bounded
set of the space of measures nor in a compact set of H−1: for the former one must have a control
of εDG in L2, and for the latter a control of εG in L2, which follows from the relation

I6 = ∂t
(
Dη̄(uε)εG(uε)

)
−
(
D2η̄(uε)uεt

)>
εG(uε) .

The stability estimate (7.7), however, does not provide such bounds. Thus, Murat’s lemma is not
applicable and the issue of compactness appears problematic.
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8 Applications

8.1 Elasticity system

Consider the relaxation of the (isothermal/isentropic) elasticity system with a source term:[
u

v

]
t

−

[
v

σ(u)

]
x

= G(u, v) =

[
0

g(u, v)

]
. (8.1)

In the context of gas flow, u is specific volume ( u = 1/ρ), thus constrained by u > 0. In the context
of the thermoelastic bar, u is the strain, likewise constrained by u > 0. Finally, in the context of
shearing motion, u is shearing, which may take both positive and negative values. In the gas case,
it is traditional to use the pressure p = −σ, instead of σ.

In the present context, the stress σ(u) is assumed to satisfy

σ(0) = 0 and 0 < γ < σ′(u) < Γ for all u ∈ Rn. (8.2)

We assume that g(u, v), with g(0, 0) = 0, satisfies one of the following:

(i) Either g is independent of u, that is g(u, v) = g(v), and satisfies(
g(v)− g(v̄)

)(
v − v̄

)
≤ 0, ∀v, v̄ ∈ R (8.3)

which corresponds to a frictional damping.

(ii) or for every compact set A ⊂ R2 there exists LA > 0 such that

|g(u, v)− g(ū, v̄)| ≤ LA
(
|u− ū|+ |v − v̄|

)
(8.4)

for all (u, v) ∈ R2, (ū, v̄) ∈ A.

The system (8.1) is equipped with the entropy - entropy flux pair η̄, q̄ given by

η(u, v) = 1
2v

2 + Σ(u), q(u, v) = −σ(u)v with Σ(u) :=

∫ u

0
σ(τ)dτ . (8.5)

For the system (8.1) the second order relaxation system (3.3) reads[
u

v

]
t

−

[
v

σ(u)

]
x

=

[
0

g(u, v)

]
+ ε

(
A

[
u

v

]
xx

−

[
u

v

]
tt

)
. (8.6)

Observe that by (8.2) and (8.5) hypotheses (H1)-(H2) are satisfied with

α = max(2Γ, 1), β = min(γ, 1), A = 2αI . (8.7)

Suppose that (8.3) holds true. Then(
Dη(u, v)− η(ū, v̄)

)(
G(u, v)−G(ū, v̄)

)
= (v − v̄)(g(v)− g(v̄)) ≤ 0
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and hence G satisfies (H3-a). Furthermore, setting

R(u, v) := −
∫ v

0
g(θ)dθ we get G(u, v) = −DR(u, v) , R(0, 0) = 0

which gives (H4). Thus, one may employ Proposition 3.1.2 to obtain the stability estimate (3.9)
and Theorem 5.3.1 to obtain the error estimate (8.6) that holds before the formation of shocks.

Similarly, suppose (8.4) holds true. Then clearly G satisfies (H3-b) and one may use Proposi-
tion 3.1.3 and Theorem 5.4.1 to obtain the stability estimate (3.13) and the error estimate (8.6),
respectively.

The stability estimates (3.9) and (3.13) suffice to apply the Lp theory of compensated compact-
ness. In the spirit of [21, Theorem 1] we prove the following convergence theorem.

Theorem 8.1.1. Let σ(u) satisfy (8.2) and suppose also

(u− u0)g′′(u) 6= 0 for u 6= u0 and g′′, g′′′ ∈ L2
⋂
L∞. (8.8)

Let (uε, vε) be a family of smooth solutions of (8.1) defined on R × [0, T ) emanating from smooth
initial data subject to ε-independent bounds

ϕ(0) =

∫
R

(
uε0

2 + vε0
2
)
dx+ ε2

∫
R

(
|uε0x|

2 + |uε0t|
2
)
dx ≤ C0.

Let A be a symmetric, positive definite matrix satisfying (8.7) and let g(u, v) satisfy either (8.3) or
(8.4). Then, along a subsequence if necessary,

uε → u , vε → v , a.e. (x, t) and in Lploc(R× (0, T )), for p < 2.

Proof. Let (uε, vε) be a family of solutions to (8.6). The proof uses the theory of compensated
compactness [27]. Typically, in such proofs, the goal is to control the dissipation measure and to
show that {

∂tη̄(uε, vε) + ∂xq̄(u
ε, vε)

}
ε

lies in a compact set of H−1loc (R× (0, T )) (8.9)

for a class of entropy-entropy flux pairs η̄ − q̄ for the equations of elasticity. In the presence of
uniform L∞-bounds, the theorem of DiPerna [13] guarantees compactness of approximate solutions
and implies that, along a subsequence, uε → u and vε → v a.e. (x, t).

In the present case L1-estimates are only available in the special case that A is a multiple of
the identity matrix (see [23]) and, in view of (3.9) and (3.13), the natural stability framework is
in the energy norm. Convergence of viscosity approximations to the equations of elastodynamics
in the energy framework is carried out in Shearer [25] (for the genuine-nonlinear case) and Serre-
Shearer [26] (for loss of genuine nonlinearity at one point). In [25] two classes of entropies, with
growth controlled by the wave-speeds at infinity, are constructed ([25, Lemma 2]) for which Tartar’s
commutation relation is justified (see [25, Lemma 2]) and are used to show that the support of the
(generalized) Young measure is a point mass ([25, Lemma 7, Theorem 1-(iii)]). When σ(u) has
one inflection point, the reduction of the Young measure is performed in [26, Lemma 3] and [26,
Section 5].
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To ensure the dissipation estimate, we employ the growth assumption (8.2), the subcharacte-
ristic condition (8.7)3 and the assumption on the source (8.3), (8.4). Then it suffices to establish
(8.9) for entropy pairs η̄ − q̄ satisfying

‖η̄‖L∞ , ‖q̄‖L∞ , ‖Dη̄‖L∞ , ‖D2η̄‖L∞ ≤ C . (8.10)

This class of entropy pairs contains (under the assumption (8.2)) the test-pairs that are used in
[25, 26] in order to prove the reduction of the generalized Young measure to a point mass and to
show strong convergence in Lploc for p < 2. Hypothesis (8.8) reflects the assumptions needed in
those works. To complete the proof, we show that (8.9) holds for entropy-entropy flux pair η̄ − q̄
satisfying (8.10).

First suppose that g(u, v) satisfies (8.3). Then by (8.5)

|Dη̄(u, v)G(u, v)| = |η̄v(u, v)g(v)| ≤ C
(
M + DηG(u, v)

)
, M = max

|v|≤1
|g(v)| . (8.11)

The inequality (8.11) is the analog of the condition (4.2) used in Theorem 4.1.2 (in which case, the
condition (4.2) is automatically satisfied for the elasticity system (8.1)). Then by (8.10), (8.11),
and Theorem 4.1.2 we conclude (8.9).

Suppose now that g(u, v) satisfies (8.4). Then G satisfies (H3-b) and hence from (8.10), (8.11),
and Theorem 4.1.3 we obtain (8.9).

We remark that the alternative relaxation system (7.3) reads[
u

v

]
t

−

[
v

σ(u)

]
x

=

[
0

g(u, v)

]
+ ε

[
0

g(u, v)

]
t

+ ε

(
A

[
u

v

]
xx

−

[
u

v

]
tt

)
. (8.12)

Then setting

S(u, v) := −g(v)v −R(u, v) we get Dη(u, v)DG(u, v) = vg′(v) = −DS(u, v), S(0, 0) = 0

which gives (H5). Thus, the stability of solutions to (8.12) follows from Proposition 7.1.5.

8.2 Isentropic combustion model

The governing equations for chemical reaction from unburnt gases to burnt gases in certain physical
regimes (in Lagrangian coordinates) read [7]:

∂tv − ∂xu = 0

∂tu+ ∂x(P (v, s, Z)) = 0

∂t
(
E(v, s, Z) + 1

2u
2 + qZ

)
t
+ ∂x(uP (v, s, Z)) = r

∂tZ +Kϕ(Θ(v, s, Z))Z = 0

(8.13)

The state of the gas is characterized by the macroscopic variables: the specific volume v(x, t), the
velocity field u(x, t), the entropy s(x, t) and the mass fraction of the reactant Z(x, t), whereas the
physical properties of the material are reflected through appropriate constitutive relations which
relate the pressure P (v, s, Z), internal energy E(v, s, Z) with the macroscopic variables. Here, and
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in what follows, q represents the difference in the heats between the reactant and the product, K
denotes the rate of the reactant, whereas ϕ(θ) > 0 is the reaction function. The function r(x, t)
represents a source term (additional radiating heat density).

In this section we address the problem of relaxation to the isentropic combustion model vu
Z


t

+

 −u
P (v,Z)

0


x

=

 0

0

−Kϕ(Θ(v, Z))

 (8.14)

that arises naturally from the system (8.13) by externally regulating r to ensure s = s0 [10]; in the
sequel we suppress the variable s and use the notation

P (v, Z) := P (v, s0, Z), Θ(v, Z) := Θ(v, s0, Z).

We impose the following requirements on P,Θ (see [16] for the motivation):

(a1) Motivated by the physical property ∂vP < 0 we assume that

0 < γ < −∂vP (v, Z) < Γ, v ∈ R, Z ∈ [0, 1].

(a2) There exists C̄ > 0 such that∣∣∣∫ v

0
PZZ(τ, Z)dτ

∣∣∣ < C̄, |∂ZP (v, Z)| < C̄, v ∈ R, Z ∈ [0, 1].

(a3) The composition ϕ ◦ Θ of the rate and constitutive temperature functions satisfies for some
L > 0 ∣∣ϕ(Θ(v, Z))− ϕ(Θ(v̄, Z̄))

∣∣ ≤ L|(v, Z)− (v̄, Z̄)| (8.15)

for all (v, Z), (v̄, Z̄) ∈ R× [0, 1].

Under (a1)-(a3) the system (8.14) admits an entropy-entropy flux pair η̄, q̄ of the form:

η(v, u, Z) =
1

2
u2 −

(∫ v

0
P (τ, Z)dτ

)
+B(Z) , q(v, u, Z) = P (v, Z)u

with B(Z) an arbitrary function. To ensure the convexity of η we assume, in addition to (a1)-(a3),
that

B′′(Z) >
(

1 +
2

Γ
C̄2 + C̄

)
, Z ∈ [0, 1] ,

in which case

0 < min
(γ

2
, 1
)
≤ D2η(v, u, Z) ≤ max

(
1,Γ + C̄,

2

Γ
C̄2 + 2C̄

)
. (8.16)

For the system (8.14) the second order relaxation system (3.3) reads vu
Z


t

+

 −u
P (v,Z)

0


x

=

 0

0

−Kϕ(Θ(v, Z))

+ ε

(
A

uv
Z


xx

−

uv
Z


tt

)
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Clearly by (8.16) hypotheses (H1) and (H2) are satisfied with

α = max
(

1,Γ + C̄,
2

Γ
C̄2 + 2C̄

)
, β = min

(γ
2
, 1
)
, A = 2αI

while, in view of (8.15), the sourceG satisfies (H3-b). Thus, one may use Proposition 3.1.3, Theorem
4.1.3 and Theorem 5.4.1 to conclude about the stability, compactness and the error estimates before
the formation of shocks, respectively.
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