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Abstract

We present a general framework for the approximation of systems of hyperbolic
balance laws. The novelty of the analysis lies in the construction of suitable
relaxation systems and the derivation of a delicate estimate on the relative
entropy. We provide a direct proof of convergence in the smooth regime for
a wide class of physical systems. We present results for systems arising in
materials science, where the presence of source terms presents a number of
additional challenges and requires delicate treatment. Our analysis is in the
spirit of the framework introduced by Tzavaras [23] for systems of hyperbolic
conservation laws.

1 Introduction

We present a general framework for the approximation of systems of hyperbolic
balance laws,

∂tu+ ∂αfα(u) = g(u) u(x, t) ∈ Rn, x ∈ Rd, (1.1)

by relaxation systems presented in the form of the extended system

∂tU + ∂αFα(U) =
1

ε
R(U) +G(U), U(x, t) ∈ RN , x ∈ Rd (1.2)

in the regime where the solution of the limiting system (as ε → 0) is smooth.
Motivated by the structure of physical models and the analysis in [6], we deal
with relaxation systems of type (1.2) which are equipped with a globally defined,
convex entropy H(U) satisfying

∂tH(U) + ∂αQα(U) =
1

ε
DH(U)R(U) + DH(U)G(U). (1.3)
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The problem of numerical approximation of nonlinear hyperbolic balance
laws is extremely challenging. In the present article we identify a class of relax-
ation schemes suitable for the approximation of solutions to certain systems of
hyperbolic balance laws arising in continuum physics. The relaxation schemes
proposed in our work provide a very effective mechanism for the approximation
of the solutions of these systems with a very high degree of accuracy.

The main contribution of the present article to the existing theory can be
characterized as follows:

• This work provides a general framework describing how, given a physical
system governed by a hyperbolic balance law, one can construct an ex-
tended system endowed with a globally defined, convex entropy H(U) and
the resulting relaxation system for its approximation. It has the potential
of being of use for the construction of suitable approximating schemes for
a variety of hyperbolic balance laws. Our analysis treats a large class of
physical systems such as the system of elasticity (6.1) (c.f. Section 6), two
phase flow models (7.2) (c.f. Section 7), and general symmetric hyperbolic
systems (8.1) (c.f. Section 8). In the latter application the relaxation of
the hyperbolic system is obtained by relaxing n-vector flux components.

• Our framework is applicable in the multidimensional setting and provides
a rigorous proof of the relaxation limit and a rate of convergence for a large
class of physically relevant hyperbolic balance laws. As it is well known,
results for multidimensional systems of hyperbolic balance laws are limited
in the literature. In addition, our analysis treats a large class of source
terms: those satisfying a special mechanism that induces dissipation as
well as more general source term.

We establish convergence of weak solutions of (1.2) to solutions of the equi-
librium system (1.1) via a relative entropy argument which relies on (1.3). The
proof provides a rate of convergence. The relative entropy method relies on
the “weak-strong” uniqueness principle established by Dafermos for systems
of conservation laws admitting convex entropy functional [9], see also DiPerna
[13]. In addition to the pioneer work of Dafermos and DiPerna, the relative
entropy method has been successfully used to study hydrodynamic limits of
particle systems [4, 14, 22, 21, 25], hydrodynamic limits from kinetic equations
to multidimensional macroscopic models [1, 3, 17], as well as the convergence
of numerical schemes in the context of three-dimensional polyconvex elasticity
[18, 20].

The main ingredients of our approach can be formulated as follows:

• A relative entropy inequality which provides a simple and direct conver-
gence framework before formation of shocks. The reader may contrast
the present framework to the classic convergence framework for relaxation
limits, which proceeds through analysis of the linearized (collision or re-
laxation) operator [26].

2



• Physically grounded structural hypotheses imposed on the relaxation sys-
tem. These structural hypotheses will be of use for the derivation of
the relative entropy inequality and for the proof of the desired conver-
gence. The relative entropy computation hinges on entropy consistency
[23], that is, the restriction of the entropy pair H − Qα on the manifold
of Maxwellians

M := {U ∈ RN : R(U) = 0} = {U ∈ RN : U =M(u), u ∈ Rn}

induces an entropy pair for the equilibrium system (1.1) in the form

η(u) = H(M(u)), qα = Qα(M(u)).

• A physically motivated dissipation mechanism (in the sense of (H8)) as-
sociated with the source term in (1.2) with respect to the manifold of
Maxwellians on which relaxation takes place. The dissipation mechanism
on (1.2) induces weak dissipation on the equilibrium balance law (1.1)
due to source consistency requirement (c.f. Section 2.4). The concept of
weak dissipation for hyperbolic balance laws was introduced by Dafermos
in [11]. To realize the role of dissipation in the present context, the reader
may contrast the result of Theorem 3.1 for weakly dissipative source terms
with Theorem 3.2 which corresponds to the case of a general source.

The paper is organized as follows: In Section 2 we present the structural
hypotheses on (1.2) which are of use in the derivation of the relative entropy
inequality and the proof of the desired convergence. In Section 3 we present
the main theorems of this article for two different classes of source terms. In
Section 4 we define the concept of relative entropy Hr(Uε,M(ū)) and entropy
fluxes Qr

α(U
ε,M(ū)). Section 5 contains the proof of the main result, which is

based on error estimates for the approximation of the conserved quantities by
the solution of the relaxation system. Applications to nonlinear elasticity and
two phase flow models (combustion) are presented in Section 6 and Section 7,
respectively. Finally, Section 8 provides a general framework describing how,
given a physical system governed by a symmetric hyperbolic balance law, one
can construct an extended system and the resulting relaxation system for its
approximation.

2 Notation and Hypotheses

For the convenience of the reader we collect in this section all the relevant
notation and hypotheses. Here and in what follows:

1. G,R, Fα, α = 1, . . . , d denote the mappings G,R, Fα : RN → RN ,
whereas g, f denote the maps g, f : Rn → Rn. In our presentation,
G(U), R(U), Fα(U), g(u), f(u) are treated as column vectors.
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2. D, Du denote the differentials with respect to the state vectors U ∈ RN

and u ∈ Rn respectively. When used in conjunction with matrix notation,
D and Du represent a row operation:

D = [∂/∂U1, . . . , ∂/∂UN ], Du = (∂/∂u1, . . . , ∂/∂un).

3. The symbol ∂α denotes the derivative with respect to xα, α = 1, . . . , d.
The summation convention over repeated indices is employed throughout
the article: repeated indices are summed over the range 1, . . . , d.

Motivated by theoretical studies [15, 18, 23] as well as computations devoted
to the approximation of the hyperbolic systems of conservation laws and kinetic
equations [5] by relaxation schemes, our analysis is based on the following as-
sumptions:

• The manifold M of Maxwellians (the equilibrium solutions Ueq to the
equation R(U) = 0) can be parameterized by n conserved quantities

Ueq =M(u), u ∈ Rn. (H1)

• ∇R(U) satisfies the nondegeneracy condition{
dimN (∇R(M(u))) = n

dimR(∇R(M(u))) = N − n
(H2)

• There exists a projection matrix

P : RN → Rn with rankP = n

corresponding to Maxwellians that determines the conserved quantity

u = PU and satisfies

PM(u) = u and PR(U) = 0 for all u ∈ Rn, U ∈ RN . (H3)

In this case, the corresponding system of balance laws for conserved quantities
is given by

∂tu+ ∂αPFα

(
M(u)

)
= PG

(
M(u)

)
(2.1)

which can be rewritten in the form

∂tu+ ∂αfα(u) = g(u)

with f , g defined by

fα(u) := PFα(M(u)), g(u) := PG
(
M(u)

)
. (2.2)

The system of balance laws (2.1) is resulting by applying P to (1.2), letting
ε→ 0, and then using the fact that at the equilibrium Ueq =M(u), u = PUeq.

Our analysis exploits the entropy structure of the relaxation systems under
consideration. Below are stated the main structural assumptions on (1.2).
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2.1 Entropy Structure

Some additional assumptions on the system (1.2) read:

• The system (1.2) is equipped with a globally defined entropy H(U) and
corresponding fluxes Qα(U), α = 1, . . . , d, such that

H : RN → R is convex,

DH(U)DFα(U) = DQα(U).
(H4)

• The entropy H(U) is such that

D(U) := −DH(U)R(U) > 0, U ∈ RN . (H5)

The entropy equation for the relaxation system (1.2) in that case is given
by

∂tH(U) + ∂αQα(U) = −1

ε
D(U) + DH(U)G(U). (2.3)

• Entropy consistency. The restriction of the entropy pair H,Qα,

η(u) := H
(
M(u)

)
, qα(u) := Qα

(
M(u)

)
, (H6)

on the equilibrium manifold M is an entropy pair η − qα for the system
of conserved quantities (2.1), that is,

Duη(u)Du fα(u) = Duqα(u), u ∈ Rn.

In that case smooth solutions to (2.1) satisfy the additional balance law

∂tH(M(u)) + ∂αQα(M(u)) = Duη(u)g(u). (2.4)

In the sequel, we present some implications on the geometry of the manifold
M obtained as a consequence of the entropy structure of the relaxation systems.
We refer the reader to [23] for the details of the derivation in a relevant setting.

2.2 Properties of H, Qα on the manifold M
The geometric implications of the assumptions

DH(U)R(U) 6 0, R(M(u)) = 0

rankP = n, P(M(u)) = u, ∀u ∈ Rn, U ∈ RN

are the following [23]:

R(DR(M(u))) = N (P)
DH(M(u))

[
DR(M(u))A

]
= 0, ∀u ∈ Rn, A ∈ RN

DH(M(u))V = 0, ∀V ∈ RN withPV = 0.

(2.5)
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Thus, the entropy consistency hypothesis (H6) along with the property (2.5)3
imply that the gradients of entropies η, H are related by

Duη(u)PA = DH(M(u))A, ∀A ∈ RN . (2.6)

Then, in view of (2.2)2, we have

Duη(u)g(u) = DH(M(u))G(M(u)), ∀u ∈ Rn

and thus the entropy equation (2.4) for conserved quantities may be written as

∂tH(M(u)) + ∂αQα(M(u)) = DH(M(u))G(M(u)). (2.7)

2.3 Dissipation

Making use of the dissipation incorporated in the term D(U) = −DH(U)R(U)
we introduce an additional hypothesis, which plays the role of relative dissi-
pation, a measure of the distance between a relaxation state vector U ∈ RN

and its “equilibrium version” M(u) ∈ RN with u = P(U) on the manifold of
Maxwellians M. More precisely,

• We assume that for some ν > 0

−
[
DH(U)−DH(M(u))

][
R(U)−R(M(u))

]
> ν |U −M(u)|2 (H7)

for arbitrary U ∈ RN with u = PU .

Note that (H7) is stronger then the following assumption:

• For every ball Br ⊂ RN there exists νr > 0 such that

−
[
DH(U)−DH(M(u))

][
R(U)−R(M(u))

]
> νr

∣∣U −M(u)
∣∣2 (H7∗)

for U,M(u) ∈ Br, where u = PU ,

which will be of use in Theorem 3.3.

Our analysis handles a large class of source terms. The following hypothesis
will be relevant to our subsequent discussion.

• The source term G(U) is weakly dissipative with respect to the manifold
M in the sense of Definition 2.1.

Definition 2.1. We say that the source G(U) is weakly dissipative with
respect to the manifold M, if for all arbitrary U,M(ū) ∈ RN

−
[
DH(U)−DH

(
M(ū)

)][
G(U)−G(M(ū))

]
> 0. (H8)

An alternative condition on the source G(U), exploited in Theorem 3.2, reads:

• For every compact set A ⊂ RN there exists LA > 0 such that∣∣G(U)−G(Ū)
∣∣ 6 LA |U − Ū | for all U ∈ RN , Ū ∈ A. (H9)
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2.4 Source consistency

We first note that the hypothesis (H8) is less restrictive than the requirement for
G to be weakly dissipative, hence a special name for it: M-weakly dissipativity.

We next point out that (H8) requires certain consistency between the source
terms G(U) and g(u) which are related by (2.2). Namely, take an arbitrary
u ∈ Rn and set U = M(u) in (H8). Then, recalling (2.6) one concludes that
(H8) implies that the source g(u) in the system (2.1) is weakly dissipative, that
is

−
(
Duη(u)−Duη(ū)

)(
g(u)− g(ū)

)
> 0, u, ū ∈ Rn. (2.8)

Thus, (H8) makes sense only when the source g(u) in the equilibrium system
(2.1) is weakly dissipative in the sense of (2.8).

2.5 Weak solutions and entropy admissibility

We introduce the notions of weak solutions and entropy admissibility following
the discussion in [12, Sec. 4.3, 4.5].

Definition 2.2. A locally bounded measurable function U(x, t), defined on Rd×
[0, T ) and taking values in an open set O ⊂ RN , is a weak solution to

∂tU + ∂αFα(U) =
1

ε
R(U) +G(U) , U(x, 0) = U0(x) , (2.9)

with F,R,G : O → RN Lipschitz, if∫ T

0

∫
Rd

{
∂tΦ̂U + ∂αΦ̂Fα(U)

}
dxdt+

∫
Rd

Φ̂(x, 0)U0(x)dx

+

∫ T

0

∫
Rd

Φ̂(x, t)
[1
ε
R(U) +G(U)

]
dxdt = 0

(2.10)

for every Lipschitz test function Φ̂(x, t), with compact support in Rd× [0, T ) and
values in M1×N .

Definition 2.3. Assume that H,Qα is an entropy-entropy flux pair of (2.9).
Then, a weak solution U(x, t) of (2.9), in the sense of Definition 2.2, defined
in Rd × [0, T ), is entropy admissible, relative to H, if∫ T

0

∫
Rd

{
∂tφH(U) + ∂αφQα(U)

}
dxdt+

∫
Rd

φ(x, 0)H(U0(x))dx

+

∫ T

0

∫
Rd

φ(x, t)DH(U)
[1
ε
R(U) +G(U)

]
dxdt > 0

(2.11)

for every nonnegative Lipschitz test function φ(x, t), with compact support in
Rd × [0, T ).
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Remark 2.1. Note, a smooth solution Uε of (1.2) satisfies (2.11) identically
as an equality and therefore it is admissible. It is worth pointing out that
relaxation systems of type (1.2) are often designed to produce global smooth
solutions. We refer the reader to [16, 26] as well as [12, Section 5.2] for further
remarks. A more detailed discussion about the existence of smooth solutions
follows in the sequel.

3 Main Results

In this section we present the main results of this article.

3.1 M-weakly dissipative source G(U)

Theorem 3.1. Let ū(x, t) be a smooth solution of the equilibrium system (2.1),
defined on Rd × [0, T ], with initial data ū0(x). Let {Uε(x, t)} be a family of
admissible weak solutions of the relaxation system (1.2) on Rd × [0, T ), with
initial data Uε

0 (x), and let uε(x, t) = PUε(x, t) denote the conserved quantity
associated to Uε.

Assume (H1)-(H8) hold and suppose that:

(i) H(U), F (U) in the relaxation system (1.2) satisfy for some M, µ, µ′ > 0

µI 6 D2H(U) 6 µ′I, |DFα(U)| < M, U ∈ RN . (3.1)

(ii) η(u) = H(M(u)), f(u) = PF (M(u)) satisfy for some K > 0∣∣D3
uη(u)

∣∣ 6 K,
∣∣D2

uf(u)
∣∣ 6 K, u ∈ Rn. (3.2)

Then, for R > 0 there exist constants C = C(R, T,∇ū,M,K) > 0 and s > 0
independent of ε such that∫

|x|<R

Hr(x, t)dx 6 C

(∫
|x|<R+st

Hr(x, 0) dx+ ε

)
, a.e. t ∈ [0, T ). (ER)

Moreover, if the initial data satisfy∫
|x|<R+sT

Hr(x, 0) dx→ 0 as ε ↓ 0, (CD)

then

ess sup
t∈[0,T )

∫
|x|<R

|Uε −M(ū)|2(x, t) dx→ 0 as ε ↓ 0. (CS)
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3.2 General source G(U)

We now drop the assumption (H8) which leads to the following theorem.

Theorem 3.2. Let ū be a smooth solution of (2.1), defined on Rd × [0, T ],
with initial data ū0, and {Uε} a family of admissible weak solutions of (1.2) on
Rd × [0, T ), with initial data Uε

0 .

Assume (H1)-(H7), (H9) hold. Suppose that H(U), F (U), η(u), and f(u)
satisfy (i)-(ii) of Theorem 3.1. Then, for R > 0 there holds the estimate (ER)
for some constants C = C(R, T,∇ū,M,K,L) > 0 and s = s(M,µ′) > 0 inde-
pendent of ε. Moreover, if the initial data satisfy (CD), then (CS) holds.

3.3 Uniformly bounded ū, {U ε}
If a priori bounds on the family of solutions {Uε} are available, then it is possible
to weaken the requirements (i) − (ii) of Theorems 3.1, 3.2. For example, one
may weaken the assumption for H to be uniformly convex and DFα, D

2
ufα, and

D3
uη to be uniformly bounded.

Theorem 3.3. Let ū be a smooth solution of (2.1), defined on Rd × [0, T ],
with initial data ū0, and {Uε} a family of admissible weak solutions of (1.2) on
Rd × [0, T ), with initial data Uε

0 .

Assume (H1)-(H6), (H7∗) hold. Suppose that:

(i) {Uε}, {M(uε)} and M(ū) take values in a ball Br ⊂ RN .

(ii) H(U) ∈ C2(RN ) is strictly convex. F (U), η(u), f(u) are smooth.

(iii) The source G(U) either satisfies (H8) or is locally Lipschitz.

Then, for R > 0 there holds the estimate (ER) for some constant

C = C
(
R, T,Br, ∥∇ū∥W 1,∞(C(T,R))

)
> 0

and the constant

s = µr
−1 sup

U,V ∈Br

∑
α

∣∣D2H(U)DFα(V )
∣∣ ,

where C(T,R) denotes a cone

C(T,R) =
{
(x, t) : 0 < t < T, |x| < R+ s(T − t)

}
,

and µr > 0 is a constant such that

µrI < D2H(U), U ∈ Br.

Moreover, if the initial data satisfy (CD), then (CS) holds.
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4 Relative Entropy

To compare the solution Uε of the relaxation system (1.2) and the solution ū of
the equilibrium system (2.1), we employ the notion of the relative entropy [9].
We define the relative entropy and entropy-fluxes [23] among the two solutions
by

Hr(Uε,M(ū)) := H(Uε)−H(M(ū))−DH(M(ū))
[
Uε −M(ū)

]
Qr

α(U
ε,M(ū)) := Qα(U

ε)−Qα(M(ū))−DH(M(ū))
[
Fα(U

ε)− Fα(M(ū))
]
.

(4.1)
By (H5) we have

D(Uε) = −DH(Uε)R(Uε) > 0, (4.2)

that expresses the entropy dissipation of the relaxation system (1.2). In view of
(2.5)3 and the fact that R(M(u)) = 0 for all u ∈ Rn, D(Uε) may be written in
an alternative form

D(Uε) = −
[
DH(Uε)−DH(M(uε))

][
R(Uε)−R(M(uε))

]
> 0 (4.3)

where uε = PUε. Finally, we denote by

S(Uε,M(ū)) := −
[
DH(Uε)−DH(M(ū))

][
G(Uε)−G(M(ū))

]
(4.4)

the term (not necessarily dissipative) associated with the source G(U).

Let U ≡ Uε(x, t) be a smooth solution of the relaxation system (1.2),
u(x, t) = PU(x, t) be the conserved quantity associated to U and ū(x, t) be
a smooth solution of the equilibrium system (2.1). Then the relative entropy
Hr(U,M(ū)) satisfies

Lemma 4.1 (Relative entropy identity ). Suppose ū(x, t) is a smooth so-
lution of the equilibrium system (2.1), defined on Rd × [0, T ], with initial data
ū0(x). Let U ≡ Uε(x, t) be any admissible weak solution of the relaxation system
(1.2) on Rd × [0, T ), with initial data U0(x), and let u(x, t) = PU(x, t) denote
the conserved quantity associated to U . Then the relative entropy Hr(U,M(ū))
satisfies ∫ T

0

∫
Rd

{
− ∂tφH

r(U, ū)− ∂αφQ
r
α(U, ū)

}
dxdt

−
∫
Rd

φ(x, 0)Hr(U0,M(ū0))dx

6
∫ T

0

∫
Rd

φ
{
− 1

ε
D − S + J1 + J2 + J3 + J4

}
dxdt

(4.5)

for every nonnegative Lipschitz test function φ(x, t), with compact support in
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Rd × [0, T ), where

J1 := −
(
D2

uη(ū)∂αū
)⊤(

fα(u)− fα(ū)−Dufα(ū)(u− ū)
)

J2 := −
(
D2

uη(ū)∂αū
)⊤P[Fα(U)− Fα(M(u))

]
J3 := g(ū)⊤

(
Duη(u)

⊤ −Duη(ū)
⊤ −D2

uη(ū)
⊤(u− ū)

)
J4 :=

[
DH(U)−DH(M(u))

]
G(M(ū)) .

(4.6)

If, in addition, {Uε} are smooth solutions, then they identically satisfy (2.11)
as equality. As a consequence, the inequality (4.5) for the relative entropy Hr

becomes the identity

∂tH
r + ∂αQ

r
α +

1

ε
D + S = J1 + J2 + J3 + J4 , (x, t) ∈ Rd × [0, T ). (4.7)

Proof. Let us fix any nonnegative, Lipschitz continuous test function φ(x, t),
compactly supported in Rd × [0, T ). Since ū is smooth, from (2.7) it follows
that η(ū) = H(M(ū)) satisfies the entropy identity

∂tH(M(ū)) + ∂αQα(M(ū)) = DH(M(ū))G(M(ū))

which in its the weak form reads∫ T

0

∫
Rd

(
∂tφH(M(ū)) + ∂αφQα(M(ū))

)
dxdt

+

∫
Rd

φ(x, 0)H(M(ū0)))dx+

∫ T

0

∫
Rd

φDH(M(ū))G(M(ū))dxdt = 0 .

(4.8)

Recall that U , an admissible weak solution of (1.2), with initial data U0, must
satisfy the inequality (2.11). Thus, upon subtracting (4.8) from (2.11), we
obtain∫ T

0

∫
Rd

{
∂tφ (H(U)−H(M(ū))) + ∂αφ (Qα(U)−Qα(M(ū)))

}
dxdt

+

∫ T

0

∫
Rd

φ
{
DH(U)

[1
ε
R(U) +G(U)

]
−DH(M(ū))G(M(ū))

}
dxdt

+

∫
Rd

φ(x, 0) (H(U0)−H(M(ū0)))dx > 0 .

(4.9)

Next, recalling that ū is a smooth solution of

∂tū+ ∂αPFα

(
M(ū)

)
= PG

(
M(ū)

)
(4.10)

and that PM(ū) = ū we obtain the identity∫ T

0

∫
Rd

{
∂tΦPM(ū) + ∂αΦPFα(M(ū))

}
dxdt

+

∫
Rd

Φ(x, 0)PM(ū0(x))dx+

∫ T

0

∫
Rd

Φ(x, t)PG(M(ū))dxdt = 0

(4.11)

11



where Φ(x, t) is a Lipschitz continuous vector field with compact support in
Rd × [0, T ) and values in M1×n. Also, since U is a weak solution of (1.2), it

must satisfy (2.10) which, with Φ̂ = ΦP ∈ M1×N , reads∫ T

0

∫
Rd

{
∂tΦPU + ∂αΦPFα(U)

}
dxdt

+

∫
Rd

Φ(x, 0)PU0(x)dx+

∫ T

0

∫
Rd

Φ(x, t)PG(U)dxdt = 0

(4.12)

in view of the property PR(U) = 0.

Now, we subtract (4.12) from (4.11), set the Lipschitz continuous vector field
Φ = φDuη(ū), and recall the geometric relation (2.6), to get∫ T

0

∫
Rd

{
∂tφDH(M(ū))

[
U −M(ū)

]
+ ∂αφDH(M(ū))

[
Fα(U)− Fα(M(ū))

]}
dxdt

+

∫ T

0

∫
Rd

φ
{(

D2
uη(ū)∂tū

)⊤P[U −M(ū)
]

+
(
D2

uη(ū)∂αū
)⊤P[Fα(U)− Fα(M(ū))

]
+DH(M(ū))

[
G(U)−G(M(ū)

]}
dxdt

+

∫
Rd

φ(x, 0)DH(M(ū0))
[
U0(x)−M(ū0)

]
dx = 0

(4.13)

The existence of an entropy pair η − qα is equivalent to the property

D2
uη(v)Dufα(v) = Dufα(v)

⊤D2
uη(v), ∀v ∈ Rn

and therefore, in view of (4.10), we have

D2
uη(ū)∂tū = D2

uη(ū)
(
−Dufα(ū)∂αū+ g(ū)

)
= −Dufα(ū)

⊤D2
uη(ū)∂αū+D2

uη(ū)g(ū).

Hence we must have(
D2

uη(ū)∂tū
)⊤P[U −M(ū)

]
+
(
D2

uη(ū)∂αū
)⊤P[Fα(U)− Fα(M(ū))

]
=
(
D2

uη(ū)∂αū
)⊤(

fα(u)− fα(ū)−Dufα(ū)(u− ū)
)

+
(
D2

uη(ū)∂αū
)⊤P[Fα(U)− Fα(M(u))

]
+
(
D2

u η(ū)g(ū)
)⊤

(u− ū)

(4.14)

where we used (2.2), the fact that u = PU , and PM(ū) = ū.
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Combining (4.9) with (4.13) - (4.14) and recalling (4.2), (4.3) we obtain∫ T

0

∫
Rd

{
∂tφH

r(U, ū) + ∂αφQ
r
α(U, ū)

}
dxdt

+

∫ T

0

∫
Rd

φ
{
− 1

ε
D − S + J1 + J2 + J4 −

(
D2

uη(ū)g(ū)
)⊤

(u− ū)

+
[
DH(M(u))−DH(M(ū))

]
G(M(ū))

}
dxdt

+

∫
Rd

φ(x, 0)Hr(U0,M(ū0))dx > 0 .

(4.15)

Observe that, in view of (2.2), (2.6), we have[
DH(M(u))−DH(M(ū))

]
G(M(ū)) =

(
Duη(u)−Duη(ū)

)
g(ū)

and hence[
DH(M(u))−DH(M(ū))

]
G(M(ū))−

(
D2

uη(ū)g(ū)
)⊤

(u− ū)

= g(ū)⊤
(
Duη(u)

⊤ −Duη(ū)
⊤ −D2

uη(ū)
⊤(u− ū)

)
= J3.

(4.16)

Then from (4.15), (4.16) we get the desired inequality (4.5).

5 Proof of Theorems via Error Estimates

To investigate the convergence of solutions {Uε} of the relaxation system (1.2)
to M(ū) in the smooth regime, one employs the inequality (4.5) derived in the
previous section. The preliminary analysis of the inequality indicates that the
evolution of Hr(·, t) depends heavily on the properties of the entropy H(U),
flux F (U), dissipative source R(U) and, especially, the source G(U).

5.1 Proof of Theorem 3.1

Proof. The argument follows along the lines of [10, Theorem 5.2.1]. Fix ε > 0.
Since Uε is an admissible weak solution of (1.2) it must satisfy (2.11). Then [12,
Lemma 1.3.3] implies that the map t→ H(Uε(·, t)) is continuous on [0, T )\F in
L∞(A) weak∗, for any compact subset A ⊂ Rd, where F is at most countable.

We now fix R > 0 and any point t ∈ [0, T ) of L∞ weak∗ continuity of
H(Uε(·, t)) and let C(t,R) denote the cone

C(t,R) =
{
(x, τ) : 0 < τ < t, |x| < R+ s(t− τ)

}
where s is a constant selected later. To prove the statement of the theorem we
need to monitor the evolution of the quantity

Ψ(τ) = Ψ(τ ; t, R) :=

∫
|x|<R+s(t−τ)

Hr(x, τ) dx, 0 6 τ 6 t.
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Clearly Uε, ū satisfy the assumptions of Lemma 4.1 and hence there holds
the relative entropy inequality∫ T

0

∫
Rd

{
−Hr(x, τ) ∂tφ−Qr

α(x, τ) ∂αφ+
1

ε
φD
}
dxdτ

−
∫
Rd

Hr(x, 0)φ(x, 0)dx 6
∫ T

0

∫
Rd

φ
{
− S + J1 + J2 + J3 + J4

}
dxdτ

(5.1)

where D, S, Jk, k = 1, . . . , 4 defined by (4.4) and φ is nonnegative Lipschitz
continuous function compactly supported in Rd × [0, T ).

Since the family {Uε} together with ū are not necessarily uniformly bounded,
to handle the flux term Qr we need to exploit the uniform convexity of the
entropy H(U). From (4.1) and the assumption (i) it follows that there exists
c1 > 0 independent of ε such that

Hr
(
Uε,M(ū)

)
> c1

∣∣Uε −M(ū)
∣∣2. (5.2)

Now, by (4.1)2 the relative entropy flux Qr
α maybe written as

Qr
α(U

ε,M(ū)) =

∫ 1

0

DQα(Û(β))
[
Uε −M(ū)

]
dβ

−
∫ 1

0

DH(M(ū))
[
DFα(Û(β))

[
Uε −M(ū)

]]
dβ

(5.3)

where Û(β) := βUε + (1− β)M(ū). Recalling (H4) we have

DQα(Û)
[
Uε −M(ū)

]
= DH(Û)DFα(Û)

[
Uε −M(ū)

]
and hence (5.3) becomes

Qr
α =

∫ 1

0

[
DH(Û(β))−DH(M(ū))

][
DFα(Û(β))

[
Uε −M(ū)

]]
dβ

=
[
Uε −M(ū)

]⊤(∫ 1

0

∫ 1

0

βD2H(Ũ)DFα(Û) dγdβ

)[
Uε −M(ū)

] (5.4)

where Ũ(β, γ) := βγUε + (1− βγ)M(ū). Then, from (5.4) and (i) we conclude
that ∑

α

|Qr
α| 6 c2|Uε −M(ū)|2 (5.5)

for some c2 = c2(M,µ′) > 0 independent of ε. Hence, in view of (5.2) and (5.5),
we can choose s > 0 such that

sHr(x, τ) +
∑
α

xα
|x|
Qr

α(x, τ) > 0, (x, τ) ∈ Rd × [0, T ). (5.6)
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Next, take δ > 0 such that t+δ < T and select the test function φ = φ(x, τ)
as follows (cf. [12, Theorem 5.3.1])

φ(x, τ) = θ(τ)γ(x, τ)

where

θ(τ) =


1, 0 6 τ < t

1− 1

δ
(τ − t), t 6 τ 6 t+ δ

0, t+ δ 6 τ,

γ(x, τ) =


1, τ > 0, |x| −R− s(t− τ) < 0

1− 1

δ

(
|x| −R− s(t− τ)

)
, τ > 0, 0 < |x| − s(t− τ)−R < δ

0, τ > 0, δ < |x| −R− s(t− τ)

and use it in (5.1). This gives

1

δ

∫ t+δ

t

∫
|x|<R

Hr(x, τ) dxdτ −
∫
|x|<R+st

Hr(x, 0) dx

+
1

δ

∫ t

0

∫
0<|x|−R−s(t−τ)<δ

(
sHr(x, τ) +

∑
α

xα
|x|
Qr

α(x, τ)
)
dxdτ

+
1

ε

∫ t

0

∫
|x|<R+s(t−τ)

Ddxdτ +O(δ)

=

∫ t

0

∫
|x|<R+s(t−τ)

(
−S + J1 + J2 + J3 + J4

)
dxdτ.

(5.7)

We next let δ → 0+ in (5.7). The second integrals in (5.7) is nonnegative in view
of (5.6). Recalling (H7) and using the fact that Hr(Uε(·, τ), ū(·, τ)) is weak∗

continuous in L∞ at τ = t we conclude∫
|x|<R

Hr(x, t)dx+
ν

ε

∫ ∫
C(t,R)

|Uε −M(uε)|2dxdτ +
∫ ∫

C(t,R)

S dxdτ

6
∫
|x|<R+st

Hr(x, 0)dx+

∫ ∫
C(t,R)

(
|J1|+ |J2|+ |J3|+ |J4|

)
dxdτ.

(5.8)

We next estimate the terms on the right-hand side of (5.8). Recalling (4.6)
and using (i), (ii), and the Young’s inequality we obtain∫ ∫

C(t,R)

|J1|+ |J3| dxdτ 6 C

∫ ∫
C(t,R)

∣∣Uε −M(ū)
∣∣2dxdτ∫ ∫

C(t,R)

|J2|+ |J4| dxdτ 6 ν

ε

∫ ∫
C(t,R)

∣∣Uε −M(u)
∣∣2 dx+ Cε,

(5.9)
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where the constant C = C(t, R, u,∇ū,M,K) > 0 depends on the norms

∥ū∥W 1,∞(C(t,R)), ∥ū∥W 1,2(C(t,R)), (5.10)

and constants M,K are introduced in (i), (ii). Finally, by (H8)∫ ∫
C(t,R)

S(Uε,M(ū)) dxdτ > 0. (5.11)

Then, combining (5.8)-(5.11) and recalling (i)1 we conclude

Ψ(t ; t, R) 6 Ψ(0; t, R) + C
(
ε+

∫ t

0

Ψ(τ ; t, R) dτ
)
.

Since R > 0 and t ∈ [0, T ] in the above inequality are arbitrary, we conclude via
the Gronwall lemma.

Remark 5.1. The terms J1, J3 (in the proof of Theorem 3.1) are bounded by
CHr(Uε,M(ū)), in view of (3.1)1, (5.9)1. This is one of the key features of the
calculations that eventually leads to the use of the Gronwall lemma.

The term S(Uε,M(ū)) has a “quadratic” structure similar to that J1, J3 and
thus, one may think that there is no need in requiring (H8). To this end, we
point out that if (H8) does not hold, then one has to make sure that∫ ∫

C(t,R)

S(Uε,M(ū)) dx 6 c

∫ ∫
C(t,R)

Hr(Uε,M(ū)) dx (5.12)

with c = c(t, R) > 0 independent of ε (in order to exploit Gronwall lemma),
and this is not true in general. In this case, to ensure (5.12), one has to impose
certain regularity conditions on the source function G(U).

5.2 Proof of Theorem 3.2

In this section we drop the assumption (H8) and following Remark 5.1 require
the source G(U) to satisfy (H9). This will ensure (5.12) and thus following the
analysis in the proof of Theorem 3.1 we obtain the result.

5.3 Proof of Theorem 3.3

In the previous two sections we established convergence of weak solutions of
the relaxation system (1.2) to the equilibrium system via the error estimate on
the cone C(R,t). Observe, however, that the bounds imposed on D2H, D3

uη and
Dufα, DFα in Theorem 3.1 are global. In particular, the requirement that H is
uniformly convex on RN (which is used to handle the flux Qr

α on the boundary
of the cone, see (5.6)) is a very stringent condition that narrows significantly
the class of systems to which our error analysis may be applied.

Let us note at this point that if a priori (local) bounds on the family of
solutions {Uε} are available, then it is possible to weaken the requirements
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(i) − (ii) of Theorems 3.1, 3.2. For example, one may weaken the assumption
forH to be uniformly convex and DFα, D

2
ufα, and D3

uη to be uniformly bounded.
This is indeed the case and the proof of Theorem 3.3 follows using the line of
argument presented in the proof of Theorem 3.1.

6 Application to Elasticity

Consider the relaxation of the (isothermal/isentropic) elasticity system:(
u

v

)
t

−

(
v

σ(u)

)
x

= g(u, v) =

(
0

g2(u, v)

)
(6.1)

with the stress σ(u) such that

σ(0) = 0 and 0 < γ < σ′(u) < Γ for all u ∈ Rn. (6.2)

We assume that the source g(u, v) satisfies one of the following:

(i) Either g is independent of u, that is g(u, v) = g(v), and satisfies(
g2(v)− g2(v̄)

)(
v − v̄

)
6 0, ∀v, v̄ ∈ R, (6.3)

(ii) or for every compact set A ⊂ R2 there exists LA > 0 such that

|g2(u, v)− g2(ū, v̄)| 6 LA
(
|u− ū|+ |v − v̄|

)
(6.4)

for all (u, v) ∈ R2, (ū, v̄) ∈ A.

The system (6.1) is equipped with the entropy - entropy flux pair η̄, q̄ given by

η̄(u, v) = 1
2v

2 +Σ(u), q̄(u, v) = −σ(u)v with Σ(u) :=

∫ u

0

σ(τ)dτ . (6.5)

Relaxation via stress approximation. Consider the following extended
system which approximates the stress σ(u):u

v

α


t

−

 v

α+ Eu

0


x

=
1

ε
R(u, v, α) +G(u, v, α) (6.6)

with

R(u, v, α) =
(
0, 0, h(u)− α

)⊤
, G(u, v, α) =

(
0, g2(u, v), 0

)⊤
and the function h(u) defined by

h(u) = σ(u)− Eu with E > Γ. (6.7)
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Observe that as ε → 0, the variable α tends to its equilibrium state αeq =
h(u). Thus, the corresponding equilibrium states ueq, veq satisfy (6.1). This
motivates the parameterization of the manifold of Maxwellians by

M(u, v, α) =
(
u, v, h(u)

)⊤
which implies (H1). Next, we easily check that

dimN (∇R(M(u, v))) = 2, dimR(∇R(M(u, v))) = 1

which verifies (H2) for n = 2, N = 3. Also, the structure of (6.1), (6.6) suggests
the choice of the projection matrix

P =

[
1 0 0
0 1 0

]
for which PM(u, v) = (u, v)⊤, PR(u, v, α) = 0 and hence (H3) is satisfied.

At this point, we identify the corresponding entropy-entropy flux pair of the
system (6.6) and verify the remaining hypotheses that allow one to apply the
theory developed in the preceding sections. In view of the requirement (6.2) for
the stress σ(u), h(u) : R → R is strictly decreasing, onto and satisfies h(0) = 0.
Hence h−1 : R → R is well-defined. Then, we set

H(u, v, α) := 1
2v

2 + 1
2Eu

2 + αu−
∫ α

0

h−1(ξ)dξ

Q(u, v, α) := −(α+ Eu)v.

It is easy to check that H,Q is the entropy-entropy flux pair for the system
(6.6). Next, we observe that the entropy H maybe written as

H(u, v, α) =
v2

2
+
γu2

4
+ ψ(α) +

(α+ Êu)2

2Ê
(6.8)

where

ψ(α) :=

∫ α

0

(
−h−1(ξ)− ξ

Ê

)
dξ, Ê := E − γ

2
> 0.

From (6.2) we have

ψ′′(α) = −h−1′(α)− 1

Ê

=
1(

E − σ′(h−1(α))
) − 1(

E − γ
2

) > γ

2(E − γ)(E − γ
2 )

> 0.
(6.9)

Then (6.8), (6.9) imply that there exist µ, µ′ > 0 such that

µI 6 D2H(v, u, α) 6 µ′I, (u, v, α) ∈ R3 (6.10)
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and hence the pair H,Q satisfies (H4). Next, we compute

DH(u, v, α) = (Eu+ α, v, u− h−1(α))

and observe that by (6.2)

−DH(u, v, α)R(u, v, α) =
(
u− h−1(α)

)(
α− h(u)

)
> 1

E

(
α− h(u)

)2
(6.11)

which implies (H5).

We next check the entropy consistency between the systems (6.1), (6.6).
First we observe that

q(u, v) := Q(M(u, v)) = (h(u) + Eu)v = σ(u)v. (6.12)

Also, we have

η(u, v) := H(M(u, v)) = 1
2v

2 +Σ(u) + k(u),

where

k(u) := 1
2Eu

2 + h(u)u−
∫ h(u)

0

h−1(ξ)dξ −
∫ u

0

σ(ξ)dξ.

From (6.7) it follows that k(0) = 0, and k′(u) = 0 for all u ∈ R and hence

η(u, v) = 1
2v

2 +Σ(u). (6.13)

Then, (6.5), (6.13), (6.12) imply (H6). Next, notice that

|(u, v, α)⊤ −M(u, v)| = |α− h(u)|

and hence (4.2), (4.3), and (6.11) imply (H7) with ν = 1
E .

Finally, we observe that[
DH(u, v, α)−DH(M(ū, v̄))

][
G(u, v, α)−G(M(ū, v̄))

]
=
(
v − v̄

)(
g2(u, v)− g2(ū, v̄)

)
=
[
Dη(u, v)−Dη(ū, v̄)

][
g(u, v)− g(ū, v̄)

] (6.14)

for each (u, v, α)⊤, M(ū, v̄) ∈ R3. Then, if the source g(u, v) satisfies (6.3), then
(6.14) implies (H8). If, on the other hand, g(u, v) satisfies (6.4), then (6.14)
implies (H9).

Thus, if
{
(uε, vε, αε)

}
is a uniformly bounded family of weak solutions, one

may apply Theorem 3.3 to establish convergence before formation of shocks. If
such a priori information is not available, then, in addition to (6.2)-(6.4), require
that

|σ′′(u)| 6 K, u ∈ R. (6.15)

In that case, from (6.10), (6.15) it follows that (3.1), (3.2) hold and therefore
one may apply Theorems 3.1, 3.2 (depending on the type of source term).
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Remark 6.1. Replacing (6.3) with the weakly dissipative condition(
g2(v)− g2(v̄)

)(
v − v̄

)
6 −c|v − v̄|2, ∀v, v̄ ∈ R,

the relaxation system falls into the framework of [16, 26], which provides global
smooth solutions for small initial data. The case of Lipschitz source terms can
also be handled following similar line of argument as in [16, 26]. Note that the
same follows for the combustion model presented below, which has a Lipschitz
source term.

7 Application to Combustion

The governing equations for chemical reaction from unburnt gases to burnt gases
in certain physical regimes read [8]:

∂tv − ∂xu = 0

∂tu+ ∂x(P (v, s, Z)) = 0

∂t
(
E(v, s, Z) + 1

2u
2 + qZ

)
t
+ ∂x(uP (v, s, Z)) = r

∂tZ +Kφ(Θ(v, s, Z))Z = 0.

(7.1)

The state of the gas is characterized by the macroscopic variables: the spe-
cific volume v(x, t), the velocity field u(x, t), the entropy s(x, t) and the mass
fraction of the reactant Z(x, t), whereas the physical properties of the material
are reflected through appropriate constitutive relations which relate the pres-
sure P (v, s, Z), internal energy E(v, s, Z) with the macroscopic variables. Here,
and in what follows, q represents the difference in the heats between the reac-
tant and the product, K denotes the rate of the reactant, whereas φ(θ) > 0 is
the reaction function. The function r(x, t) represents a source term (additional
radiating heat density).

Isentropic combustion. In this section we address the problem of relaxation
to the isentropic combustion model: v

u

Z


t

+

 −u
P (v,Z)

0


x

=

 0

0

−Kφ(Θ(v, Z))

 (7.2)

that arises naturally from (7.1) by externally regulating r to ensure s = s0 [9],
in which case we suppress variable s and use the notation

P (v, Z) := P (v, s0, Z), Θ(v, Z) := Θ(v, s0, Z). (7.3)

Motivation for assumptions. Our main objective is to find a proper extended
system associated with the system (7.2) that models isentropic processes with
specific volume v away from both zero and vacuum, that is, when v has upper
and lower bounds,

v0 6 v 6 V0 for some v0, V0 ∈ (0,∞). (7.4)
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For the rest of the paper we assume that the a priori bound (7.4) holds.

The physics of (isentropic) thermodynamical processes determined by the
equations (7.1) and compatible with the Clausius-Duhem inequality require the
choice of the pressure P (v, Z) and temperature Θ(v, Z) which are compatible
with the following properties: for v ∈ [v0, V0], s = s0, and Z ∈ [0, 1]

P (v, z) = −∂vE(v, s0, Z) > 0, Θ(v, Z) = ∂sE(v, s0, Z) > 0 (7.5)

for some (appropriate) energy function

E(v, s, Z) > 0 with EZ(v, s0, Z) > 0. (7.6)

We remark that such a function E(v, s, Z) is known to exist for the system (7.1)
as long as v, s have lower and upper bounds [8].

For technical convenience, outside of the interval (7.4), we redefine the con-
stitutive law E(v, s0, Z) ensuring that the functions P (v, Z), Θ(v, Z) are defined
for all v ∈ R, Z ∈ [0, 1] with bounded derivatives as indicated below.

Conditions on P , Θ.

(a1) Motivated by the physical property ∂vP < 0 we assume that

0 < γ < −∂vP (v, Z) < Γ, v ∈ R, Z ∈ [0, 1]. (7.7)

(a2) There exists C̄ > 0 such that∣∣∣∫ v

0

PZZ(τ, Z)dτ
∣∣∣ < C̄, |∂ZP (v, Z)| < C̄, v ∈ R, Z ∈ [0, 1]. (7.8)

(a3) The composition φ ◦Θ of the rate and constitutive temperature functions
satisfies for some L > 0∣∣φ(Θ(v, Z))− φ(Θ(v̄, Z̄))

∣∣ 6 L|(v, Z)− (v̄, Z̄)| (7.9)

for all (v, Z), (v̄, Z̄) ∈ R× [0, 1].

Under (a1)-(a3) the system (7.2) admits an entropy-entropy flux pair η̄, q̄ of
the form:

η̄(v, u, Z) =
1

2
u2 −

(∫ v

0

P (τ, Z)dτ

)
+B(Z)

q̄(v, u, Z) = P (v, Z)u,

(7.10)

where B(Z) is an arbitrary function.

Relaxation via approximation of pressure. In the spirit of the example
for the elasticity system (6.1) we define

h(v, Z) := −P (v, Z)− Ev with E > Γ. (7.11)
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We now approximate the pressure P (v, Z) by the linear combination −(α+Ev).
This leads to the extended system,

v

u

Z

α


t

−


u

α+ Ev

0

0


x

=
1

ε
R(v, u, Z, α) +G(v, u, Z, α), (7.12)

where
R(v, u, Z, α) =

[
0, 0, 0, h(v, Z)− α

]⊤
G(v, u, Z, α) =

[
0, 0, −Kφ(Θ)Z, 0

]⊤
.

(7.13)

Note that as ε→ 0, α tends to its equilibrium state αeq = h(veq, Zeq). Then

αeq + Eveq = −P (veq, Zeq)

and hence (veq, ueq, Zeq) solves (7.2). This motivates the parameterization of
the manifold of Maxwellians M by

M(v, u, Z) =
[
v, u, Z, h(v, Z)

]⊤
which yields (H1). Next, we compute

DR(v, u, Z, α) =


0 0 0 0
0 0 0 0
0 0 0 0

hv(v, Z) 0 hZ(v, Z) −1


from which we conclude

dimN
(
DR(M(v, u, Z))

)
= 3, dimR

(
DR(M(v, u, Z))

)
= 1

which verifies (H2) for n = 3, N = 4. We choose the projection matrix

P =

1 0 0 0
0 1 0 0
0 0 1 0


for which PM(v, u, Z) = (v, u, Z)⊤, PR(v, u, Z, α) = 0 and hence (H3) holds.

Entropy of the extended system. We next specify the entropy-entropy flux
pair of the relaxation system (7.12). By (7.7)

0 < E − Γ < −hv(v, Z) < E − γ. (7.14)

Hence there exists j(α,Z) : R× [0, 1] → R such that

j(h(v, Z),Z) = v, h(j(α,Z),Z) = α (7.15)
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for all v, α ∈ R, Z ∈ [0, 1]. Thus, we define

H(v, u, Z, α) :=
u2

2
−
∫ α

h(0,Z)

j(ξ, Z)dξ + αv +
Ev2

2
+B(Z)

Q(u, v, α) := −
(
α+ Ev

)
u

with B(Z) an arbitrary function such that

B′′(Z) > m > 0, Z ∈ [0, 1] (7.16)

where the constant m > 0 is to be specified.

It is easy to check that H,Q is the entropy-entropy flux pair for (7.12). To
show that H(U) is strictly convex, however, is less trivial and therefore, for
the convenience of a reader, we provide detailed calculations. Recalling that
E > Γ > γ we rewrite H(v, u, Z, α) as follows:

H(u, v, Z, α) =

(
u2

2
+
γv2

4
+ ψ(α,Z)

)
+

(
α+ Êv

)2
2Ê

(7.17)

with

ψ(α,Z) := −
∫ α

h(0,Z)

j(ξ, Z)dξ − α2

2Ê
+B(Z), Ê := E − γ

2
.

We now show that there exists Λ > 0 such that

Λ−1I 6 D2ψ(α,Z) 6 ΛI (7.18)

by establishing the bounds on the eigenvalues of

D2ψ(α,Z) =

 −jα(α,Z)− Ê−1 −jZ(α,Z)

−jZ(α,Z) B′′(Z)− ∂ZZ

(∫ α

h(0,Z)
j(ξ, Z)dξ

)
 . (7.19)

Differentiating (7.15)2 and recalling (7.11) we get

jα(α,Z) =
1

hv
(
j(α,Z), Z

) , jZ(α,Z) =
PZ(j(α,Z), Z)

hv(j(α,Z), Z)
(7.20)

and hence by (7.8), (7.14)

1

E − γ
6 −jα(α,Z) 6 1

E − Γ
,
∣∣jZ(α,Z)∣∣ 6 C̄

E − Γ
. (7.21)

Then by (7.21)1

γ

2(E − γ)Ê
6
[
D2ψ(α,Z)

]
11

6
Γ− 1

2γ

(E − Γ)Ê
. (7.22)
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Next, using (7.15), (7.20)1,2 we compute

∂Z

(∫ α

h(0,Z)

j(ξ, Z)dξ

)
=

=

∫ α

h(0,Z)

jZ(ξ, Z)dξ −
(
j(h(0, Z),Z)hZ(0, Z)

)
=

∫ α

h(0,Z)

PZ(j(ξ, Z), Z)jα(ξ, Z)dξ =

∫ j(α,Z)

0

PZ(τ, Z)dτ

and hence

∂ZZ

(∫ α

h(0,Z)

j(ξ, Z)dξ

)
= PZ(j(α,Z), Z)jZ(α,Z) +

∫ j(α,Z)

0

PZZ(τ, Z) dτ .

Then, by (7.8), (7.21)2 we conclude∣∣∣∣∂ZZ

(∫ α

0

j(ξ, Z) dξ

)∣∣∣∣ 6 C̄

(
1 +

C̄

E − Γ

)
. (7.23)

The analysis of the above inequalities motivates to choose

m := m̂+ C̄

(
1 +

C̄

E − Γ

)
with m̂ :=

[( C̄2

E − Γ

)2
+ 1

]
2(E − γ)Ê

γ

in which case by (7.16), (7.19) and (7.23) we obtain

0 < m̂ 6
[
D2ψ(α,Z)

]
22

6 2m. (7.24)

Combining (7.21)2, (7.22), and (7.24) we get

1 6 det
[
D2ψ(α,Z)

]
= λ1λ2, (7.25)

where λ1, λ2 ∈ R denote the largest and smallest eigenvalues of D2ψ, respec-
tively. Observe that (7.19), (7.22), and (7.24) imply

0 < λ1 6 Λ :=

(
2m+

Γ− γ
2

(E − Γ)Ê
+

C̄2

E − Γ

)
. (7.26)

Then, from (7.25), (7.26) we obtain the estimate (7.18).

Combining (7.17), (7.18) we conclude that for some µ, µ′ > 0

µI 6 D2H(v, u, Z, α) 6 µ′ I (7.27)

and this yields (H4).
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Now, recalling (7.13), (7.15), and (7.21)1 we obtain

−DH(v, u, Z, α)R(v, u, Z, α)

= −
(
j(h(v, Z), Z)− j(α,Z)

)(
h(v, Z)− α

)
= −

[∫ 1

0

jα
(
sh(v, Z) + (1− s)α,Z

)
ds
](
h(v, Z)− α

)2
> 1

E − γ

(
h(v, Z)− α

)2
=

1

E − γ

∣∣M(v, u, Z)− (v, u, Z, α)⊤
∣∣2

which implies that the entropy H satisfies hypotheses (H5), (H7).

Next, we observe that (7.11), (7.15), and (7.20)1 imply∫ h(v,Z)

h(0,Z)

j(ξ, Z)dξ =

∫ v

0

hv(τ, Z)τ dτ = h(v, Z)v +
Ev2

2
+

∫ v

0

P (v, Z)dτ.

Thus, the entropy pair H,Q restricted to the equilibrium manifold satisfies

η(v, u, Z) := H(M(v, u, Z)) =
u2

2
−
∫ v

0

P (v, Z)dτ +B(Z)

q(v, u, Z) := Q(M(v, u, Z)) = −
(
h(v, Z) + Ev

)
u = P (v, Z)u.

(7.28)

Then, (7.28) together with (7.10) yields (H6).

Consider an arbitrary compact set A ⊂ R × R × [0, 1] × R. Then, by (7.9)
for all

(v, u, Z, α) ∈ R× R× [0, 1]× R, (v̄, ū, Z̄, ᾱ) ∈ A,
we have∣∣G(v, u, Z, α)−G(v̄, ū, Z̄, ᾱ)

∣∣
=
∣∣Kφ(Θ(v, Z))Z −Kφ(Θ(v̄, Z̄))Z̄

∣∣
6 |K|

(∣∣Z∣∣∣∣φ(Θ(v, Z))− φ(Θ(v̄, Z̄))
∣∣+ ∣∣φ(Θ(v̄, Z̄))||Z − Z̄|

)
6 (L+ LA)|K|

∣∣(v, u, Z, α)− (v̄, ū, Z̄, ᾱ)
∣∣,

(7.29)

where LA > 0 denotes a constant for which, in view of (7.9), there holds∣∣φ(Θ(v̄, Z̄))
∣∣ 6 LA, (v̄, ū, Z̄, ᾱ) ∈ A.

The estimate (7.29) implies that the source G satisfies the hypothesis (H9)
on R × R × [0, 1] × R, the state space of (7.12) with initial data such that
0 6 Z(·, 0) 6 1. Thus, if the family

{
(vε, uε, Zε, αε)

}
is uniformly bounded,

one may apply Theorem 3.3 to establish convergence before the formation of
shocks. If such a priori information is not available, then, in addition to (a1)-
(a3), require that

|D2P (v, Z)| 6 K, |B′′′(Z)| < K, v ∈ R, Z ∈ [0, 1] ∈ R. (7.30)

In that case, from (7.27), (7.30) it follows that (3.1), (3.2) hold and therefore
one may apply Theorem 3.2.
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8 General framework for symmetric hyperbolic
systems, d = 1

In this section we present a general strategy indicating how starting from a
symmetric hyperbolic system one can construct an extended relaxation system.

Consider the hyperbolic balance law

∂tu+ ∂xf(u) = g(u), u, f(u), g(u) ∈ Rn (8.1)

such that:

• The flux f(u) has symmetric Duf(u). Thus,

f(u) = DΦ⊤(u) for some Φ(u) : Rn → R. (h1)

• Φ is convex and for some Γ, γ > 0 such that

0 < γ < D2Φ(u) < Γ, u ∈ Rn. (h2)

• For each compact A ⊂ Rn there exists LA > 0 such that∣∣g(u)− g(ū)
∣∣ 6 LA |u− ū|, u ∈ Rn, ū ∈ A. (h3)

By (h1) the system (8.1) admits entropy-entropy flux pair

η̄(u) = Φ(u), q̄(u) =
1

2
|DΦ(u)|2.

Relaxation via flux approximation. Next, we approximate the flux f(u)
by the combination α + DE⊤(u), where α ∈ Rn is a new vector variable and
E(u) : Rn → R is a convex function such that for some E, δ > 0 there holds

(E + δ)I > D2
uE(u) > E I, E > Γ > γ > δ > 0. (h4)

This leads to the relaxation system for variables u, α ∈ Rn(
u

α

)
t

+

(
α+DE⊤(u)

0

)
x

=
1

ε
R(u, α) +G(u, α) (8.2)

with

R(u, α) =
[
0, h(u)− α

]⊤
, G(u, α) =

[
g(u), 0

]⊤
. (8.3)

We now define

Σ(u) := E(u)− Φ(u), h(u) := −DuΣ
⊤(u) = f(u)−DuE⊤(u). (8.4)

Then, by (h2), (h4) we have

D2
uE > E I > (E + δ − γ)I > D2

uΣ > (E − Γ)I. (8.5)

The mapping
DuΣ : Rn → Rn is onto (8.6)

as implied by the following lemma (c.f. Zeidler [27]).
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Lemma 8.1. Suppose V (u) : Rn → Rn is a C1-mapping such that

DV (u) : Rn → Rn is invertible for all u ∈ Rn

and the map V (u) is coercive, that is, V (u)⊤u > c|u|2, u ∈ Rn for some fixed
constant c > 0. Then, V must be surjective and covers all of Rn.

Observe that as ε → 0, α tends to its equilibrium state αeq = h(ueq) in
which case the corresponding equilibrium state ueq satisfies (8.1). This suggests
the parameterization of the manifold of Maxwellians by

M(u) =
[
u, h(u)

]⊤
which yields (H1). Next, observe that

dimN (DR(M(u))) = n, dimR(DR(M(u))) = n

which verifies (H2) with N = 2n. The structure of (8.1), (8.2) suggests the
choice of the projection matrix

P =
[
I,0

]
: R2n → Rn for which PM(u) = u, PR(u, α) = 0

which implies (H3).

To construct the entropy-entropy flux pair for the relaxation system (8.2)
we exploit the ideas of the analysis of A. Tzavaras [24]. By (8.5), (8.6) the map
DΣ is bijective. This motivates the definition of

j(α) : Rn → Rn by j(α)⊤ = −(DuΣ)
−1(−α), α ∈ Rn. (8.7)

Then, by the inverse mapping theorem, Dαj(α) is symmetric and hence there
exists J(α) : Rn → R such that

DαJ(α) = j(α)⊤ = −(DΣ)−1(−α)

D2
αJ(α) =

[
D2

uΣ(−DαJ
⊤(α))

]−1
=
[
D2

uΣ(−j(α))
]−1

.
(8.8)

Furthermore, by (8.5) we obtain that J(α) is uniformly convex with

(E + Γ)−1 I > D2
αJ(α) > (E + δ − γ)−1 I. (8.9)

We next define
H(u, α) = E(u) + α⊤u+ J(α)

Q(u, α) =
1

2

∣∣α+DE⊤(u)
∣∣2. (8.10)

It is easy to verify that H,Q is the entropy-entropy flux pair for the system
(8.2). To show that H(u, α) is strictly convex, we compute the Hessian

D2H(u, α) =

[
D2

uE(u) I

I D2
αJ(α)

]
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and write

(u, α)⊤
[
D2H(u, α)

]
(u, α) = u⊤

[
D2E(u)

]
u+ 2α⊤u+ α⊤[D2J(α)

]
α.

Then, recalling (h4), (8.5), and (8.9) we get the estimates

(u, α)⊤
[
D2H(u, α)

]
(u, α) > 1

2 (γ − δ)|u|2 +
1
2 (γ − δ)|α|2(

E + 1
2 (δ − γ)

)(
E + δ − γ

)
and

(u, α)⊤
[
D2H(u, α)

]
(u, α) 6 (E + δ + 1)|u|2 +

(
(E − Γ)−1 + 1

)
|α|2.

The above inequalities and the fact that γ > δ imply that there exist µ, µ′ > 0
such that

µ′I 6 D2H(u, α) 6 µI, (u, α) ∈ Rn+n (8.11)

and hence we conclude that the pair H,Q satisfies (H4).

Next, we compute

DH(u, α) =
[
DuE(u) + α⊤, u⊤ +DαJ(α)

]
and observe that by (8.4)1, (8.7),

−j(h(u)) = (DΣ)−1(−h(u)) = (DΣ)−1(DΣ⊤(u)) = u. (8.12)

Hence recalling (8.3)1, (8.4), (8.8)1, and (8.9) we obtain

−DH(u, α)R(u, α) =

=
(
u⊤ +DαJ(α)

)(
α− h(u)

)
=
(
j(α)− j(h(u))

)⊤(
α− h(u)

)
= (α− h(u)

)⊤[ ∫ 1

0

D2J
(
sα+ (1− s)h(u)

)
ds

](
α− h(u)

)
> 1

(E + δ − γ)

∣∣α− h(u)
∣∣2 =

1

(E + δ − γ)

∣∣(u, α)⊤ −M(u)
∣∣2.

The last inequality implies that H satisfies hypotheses (H5), (H7).

Next, observe that by (8.4), (8.10)

η(u) := H(M(u)) = H(u, h(u))

= E(u) + h(u)⊤u+ J(h(u))

= Φ(u) + Σ(u)− [DuΣ(u)]u+ J(h(u)).

(8.13)

Then, by (8.4), (8.8)1, and (8.12)

Duη(u) = DuΦ(u)−
[
D2

uΣ(u)
]
u+ j(h(u))⊤

[
−D2

uΣ(u)
]
= DuΦ(u)
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and we conclude
η(u) = Φ(u) + C for some C ∈ R.

Similarly, by (8.4), (8.10)

q(u) := Q(M(u)) = Q(u, h(u)) = 1
2

∣∣h(u) + DE⊤(u)
∣∣2 = 1

2

∣∣DΦ(u)
∣∣2. (8.14)

By the discussion in the beginning of the section we conclude that η, q defined
in (8.13), (8.14) is an entropy-entropy flux pair of (8.1) which implies (H6).

Now, take an arbitrary compact set C ⊂ Rn × Rn and define

A =
{
ū ∈ Rn : for some ᾱ ∈ Rn (ū, ᾱ) ∈ C

}
which is compact as well. Then, by (h3) for all (u, α) ∈ Rn+n, (ū, ᾱ) ∈ C

|G(u, α)−G(ū, ᾱ)| = |g(u)− g(ū)| 6 LA|(u, α)− (ū, ᾱ)|.

The above estimate shows that G(u, α) satisfies (H9). Thus, the relaxation
system (8.2) satisfies (H1)-(H7), (H9). Thus, if

{
uε
}

is uniformly bounded
family of weak solutions, one may apply Theorem 3.3 to establish convergence.
If such a priori information is not available, then, in addition to (h1)-(h4),
require that

|D3Φ(u)| 6 K, u ∈ Rn. (8.15)

In that case, from (8.11), (8.15) it follows that (3.1), (3.2) hold and therefore
one may apply Theorem 3.2 to establish convergence in the smooth regime.
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