
COMMUN. MATH. SCI. c© 2012 International Press

Vol. 10, No. 1, pp. 87–115

A VARIATIONAL APPROXIMATION SCHEME FOR RADIAL
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Abstract. We consider the equations describing the dynamics of radial motions for isotropic
elastic materials; these form a system of non-homogeneous conservation laws. We construct a varia-
tional approximation scheme that decreases the total mechanical energy and at the same time leads
to physically realizable motions that avoid interpenetration of matter.
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1. Introduction
The equations describing radial motions of nonlinear, isotropic, elastic materials

take the form
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. (1.1)

Here, y stands for a radial motion y(x,t)=w(R,t) x
R , R= |x|, x∈R

3, and (1.1) mon-
itors the evolution of its amplitude w(R,t). A necessary condition for y to represent
a physically realizable motion is detF >0 with F =∇y. In the radial case, it dictates

wR(w/R)2>0, (1.2)

and is also a sufficient condition for avoiding interpenetration of matter.
The constitutive properties of hyperelastic materials are completely determined

by the stored energy function W (F ) :M3×3
+ → [0,∞), which — due to frame in-

difference — has to be invariant under rotations. For isotropic elastic materials
W (F )=Φ(v1,v2,v2), where Φ is a symmetric function of the principal stretches
v1,v2,v3 of F ; see [14]. Convexity of the stored energy is, in general, incompati-
ble with certain physical requirements and is not a natural assumption. For instance,
in order to avoid interpenetration of matter the stored energy should increase without
bound as detF→0+ so that compression of a finite volume down to a point would
cost infinite energy. This behavior is inconsistent with simultaneously requiring con-
vexity and invariance of the stored energy under rotations. As an alternative, the
assumption of polyconvexity [1] is often employed, which postulates that

W (F )=σ(F,cofF,detF ),
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with σ a convex function of the null-Lagrangian vector (F,cofF,detF ), and encom-
passes certain physically realistic models (e.g. [5, Sec 4.9, 4.10]). In this work, we
employ a specific form of polyconvex stored energy,

W (F )=Φ(v1,v2,v3)

=φ(v1)+φ(v2)+φ(v3)+g(v2v3)+g(v1v3)+g(v1v2)+h(v1v2v3),
(1.3)

where φ, g, and h are convex functions and h(δ)→+∞ as δ→0+.

Equation (1.1) may be recast as a system of inhomogeneous balance laws,
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(1.4)

where u=wR, and v=wt. The system admits the entropy-entropy flux pair
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which expresses the conservation of mechanical energy along smooth solutions. For
polyconvex stored energies, the “entropy”

η=
1

2
v2 +Φ

(
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w

R
,
w

R

)

is not convex, which causes various difficulties in applying the general theory of con-
servation laws. Nevertheless, for three-dimensional elastodynamics there are available
nonlinear transport identities for the null-Lagrangians [11] which allow us to view the
equations of elasticity as constrained evolution of an enlarged symmetrizable system
[8, 6] equipped with a relative entropy identity [10]. The enlarged system suggests
a variational approximation scheme for polyconvex elasticity that dissipates the me-
chanical energy [8], and which, in the one-dimensional case, produces entropy weak
solutions [7]. Conceptually similar structures are available in models of electromag-
netism leading to augmented symmetrizable hyperbolic systems [4, 12, 13].

The above results do not take into account the constraint of positive determinant,
necessary to interpret y as a physically realizable motion. In this article, we consider
the equations of radial elasticity (1.1) and proceed to devise a variational approxi-
mation scheme that on one hand preserves the positivity of determinants (1.2) and
on the other produces a time-discretized variant of entropy dissipation. As in [8], the
scheme is based on transport identities for the null-Lagrangians. Null-Lagrangians
are potential energies Ψ(v1,v2,v3;R) for which the functional

I[w]=

∫ 1

0

Ψ
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wR,
w

R
,
w

R

)

;R
)

dR (1.6)

has variational derivative zero. They satisfy

−∂R (Ψ,1)+R−1 (Ψ,2 +Ψ,3)=0 for all functionsw(R), (1.7)
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where Ψ,i :=
∂Ψ
∂vi

, i=1,2,3, stands for the partial derivative. The null-Lagrangians are

computed to be the functions v1, v1v2R, v1v3R, or v1v2v3R
2. Along solutions of the

dynamical problem, each null-Lagrangian satisfies the transport identity

∂tΨ=∂R (Ψ,1v), (1.8)

with Ψ and Ψ,i are evaluated at Γ=(wR,w/R,w/R,R). The identities (1.8) allow us
to embed the system (1.4) into the symmetrizable first-order evolution (3.6) in Section
3.2.

The enlarged system, in the form (3.6), cannot handle the positivity of determi-
nants constraint. For this reason we follow an alternative strategy, combining a change
of variables suggested in Ball [3] (for the equilibrium problem) with the idea of exten-
sions based on null-Lagrangians, and carry out an alternative extended system. We
set ρ=R3, α=w3, β=wR/R

2, γ=w2 and let
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)

. (1.9)

The second extension has four actual unknowns v, α, β, and γ, and is the symmetriz-
able system listed in (3.26) of Section 3.3 endowed with the entropy pair

∂t
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2
+G(Ξ)

)

−∂ρ
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3ρ2/3G,i(Ξ)Ωi
,1(Γ)v

)

=0, (1.10)

where G is defined in (3.12) and is (assumed) convex and Γ is as in (3.14).
The extended system (3.26) is discretized in time using an implicit-explicit

scheme. It is the Euler-Lagrange equations of the variational problem: given v0
and Ξ0 defined via α0, β0, and γ0 as in (1.9), minimize

I(α,β,γ,v)=

∫ 1

0

{

1

2
(v−v0)2 +G(Ξ)

}

dρ (1.11)

over the set of admissible functions

Aλ =
{
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(1.12)

The differential constraints in (1.12) are affine, the condition α(1)=λ corresponds to
the imposed boundary condition y(x)=λx, x∈∂B, while α′>0 secures the positivity
of determinants (1.2). We prove the existence and uniqueness of a minimizer for the
functional I over Aλ and that the minimizer is a weak solution to the corresponding
Euler-Lagrange equations, that is, a solution of the time-discrete scheme. The anal-
ysis of the minimization problem (1.11)-(1.12) uses direct methods of the calculus of
variations, in the spirit of [3], with the novel element of accounting for the evolutionary
constraints in (1.12).

In continuum physics, weak solutions of a system of conservation laws are required
to satisfy entropy inequalities of the form

∂tη+∂αqα ≤0. (1.13)
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Such inequalities reflect irreversibility and originate from the second law of thermo-
dynamics. For instance, admissible shocks of the elasticity equations are required to
dissipate the mechanical energy. Accordingly, approximating schemes are expected
to respect such behaviors and produce entropy dissipating solutions in the limit. The
variational scheme studied here turns out to satisfy a discrete version of the entropy
inequality

(
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)

−
(

v0
2

2 +G(Ξ0)
)

h
− d

dρ

(
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,1(Γ

0)v
)

60 (1.14)

(see Section 4). In addition, the approximants satisfy αρ>0 — the transformed
version of (1.2). Finally, if the constructed approximants converge pointwise as the
time-step h→0, then the limit will satisfy the mechanical energy dissipation inequality

∂t

(

v2

2
+G(Ξ)

)

−∂ρ

(

3ρ2/3G,i(Ξ)Ωi
,1(Γ)v

)

60. (1.15)

The paper is organized as follows. In Section 2 we outline the derivation of the
equations of radial elasticity and list various mechanical considerations relevant to
this work. Section 3 contains a discussion of null-Lagrangians and the properties of
the two symmetrizable extensions of (1.4) pursued. Section 4 introduces the time-
discrete scheme and its relation to a variational problem. In Section 5 we consider the
minimization problem (1.11) and prove Theorems 5.4 and 5.5 regarding existence and
uniqueness of minimizers. The Euler-Lagrange equations associated to the minimiza-
tion problem are derived in Theorem 6.1 of Section 6, and the regularity of minimizers
is discussed in Section 7. The fact that minimizers satisfy the time-discretized version
of the entropy dissipation inequality (1.14) is proved in Section 4.

2. Preliminaries

We consider the equations of nonlinear elasticity











ytt =divS(∇y), in B×(0,∞),

y(x,t)=λx, on ∂B× [0,∞),

det∇y>0, (x,t)∈B× [0,∞),

(2.1)

on the unit ball B={x∈R
n : |x|<1}, subject to uniform stretching at the boundary

and initial conditions

y(x,0)=y0(x), yt(x,0)=v0(x), x∈B. (2.2)

In order for the geometric mapping y :B× [0,∞)→R
n to correspond to a physically

realizable motion we have to exclude interpenetration of matter. As a minimum
requirement the condition det∇y>0 is imposed.

Let Mn×n be the real n×n matrices, Mn×n
+ ={F ∈Mn×n : detF >0}, and let

SO(n) denote the set of proper rotations. The Piola-Kirchhoff stress is a mapping
S :Mn×n

+ →Mn×n, and for hyperelastic materials it is defined by the formula

S(F )=∂W (F )/∂F, (2.3)

where W :Mn×n
+ →R

n is the stored-energy function of the elastic body.
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We assume that the stored energy function W satisfies the physical requirement
of frame-indifference and that the elastic material is isotropic. Then,

W (QF )=W (F )=W (FQ) ∀F ∈Mn×n
+ , Q∈SO(n) (2.4)

and (see Truesdell and Noll [14, pp 28, 317]) there exists a symmetric function

Φ :Rn
+ ={x∈R

n :xi>0∀i}→R

such that

W (F )=Φ(v1,... ,vn) ∀F ∈Mn×n
+ , (2.5)

where v1,... ,vn are the singular values of F , i.e. the eigenvalues of (FTF )1/2. We
note that the symmetry of Φ implies

∂Φ

∂vi
(a,b,... ,b)=

∂Φ

∂vj
(a,b,... ,b), i,j>2, a,b∈R+. (2.6)

It is easy to check that for hyperelastic, isotropic materials, frame-indifference implies

S(QFQT)=QS(F )QT, for allQ∈SO(n). (2.7)

2.1. Radial elasticity. A function f :B\{0}→R
n is called radial if

f(x)=w(R)
x

R
, R= |x|,

where w : [0,∞)→ [0,∞). The space of deformations of B is denoted by

Defp(B)={f ∈W p
1 (B,Rn) : det∇f >0a.e.}.

Lemma 2.1 (J. Ball [3]). Let f be a radial function. Then f ∈Defp(B) if and
only if w is absolutely continuous on (0,1) and satisfies wR(w/R)n−1>0 almost ev-
erywhere, and

1
∫

0

(

|w′|p + |w/R|p
)

Rn−1dR <∞.

In this case the weak derivatives of f are given by

∇f =
w

R
I+
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R

) x⊗x
R2

a.e. x∈B.

Our next goal is to consider the problem (2.1) and to recast it for radial motions

y(x,t)=w(R,t)
x

R
for x 6=0, (2.8)

where w : [0,1)× [0,∞)→R satisfies w(R,t)>0. Lemma 2.1 implies

∇y=
w

R
I+
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R

) x⊗x
R2

a.e. x∈B, (2.9)
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and hence the eigenvalues of ∇y are expressed as

v1 =wR, v2 = ...=vn =w/R.

The requirement

det∇y=wR(w/R)n−1>0 (2.10)

dictates wR,
w
R >0. Since ∇y is symmetric and positive definite, the singular values

of ∇y coincide with its eigenvalues, the stored energy takes the form

W (∇y)=Φ
(

wR,
w

R
,...,

w

R

)

,

and property (2.7) implies that the Piola-Kirchhoff stress can be expressed as (see
e.g. J.Ball [3])

S(∇y)=Φ,2 (wR,w/R,...,w/R)I

+[Φ,1 (wR,w/R,...,w/R)−Φ,2 (wR,w/R,...,w/R)]
x⊗x
R2

,

where Φ,j := ∂Φ
∂vj

, j=1,2,3. For radial motions, the system (2.1) then takes the form

Rn−1∂ttw=
∂

∂R

(

Rn−1Φ,1(wR,... ,w/R)
)

−Rn−2
n
∑

i=2

Φ,i(wR,... ,w/R)

w(1,t)=λ, wR (w/R)
n−1

>0, (R,t)∈ (0,1)× [0,∞)

(2.11)

of a second order equation describing the evolution of w(R,t) subject to the constraint
(2.11)2. The latter expresses the requirement that matter cannot interpenetrate unto
itself.

2.2. Polyconvex stored energy for n=3. From now on we fix the number of
dimensions to n=3 and assume that the stored energyW :M3×3

+ →R
3 is polyconvex ,

that is,

W (F )= ¯̄G(F,cofF,detF )

for some convex function ¯̄G :M3×3
+ ×M3×3

+ ×R+→R.

By the polar decomposition theorem any matrix F ∈M3×3
+ is expressed in the

form F =RU with R∈SO(3) and U =+
√
FTF . Further, U =QT diag(v1,v2,v3)Q

where Q is the orthogonal matrix of eigenvectors and v1,v2,v3 are the eigenvalues of
U . The properties (2.4) of isotropy and frame-indifference imply

W (F )= ¯̄G









v1
v2
v3



,





v2v3
v1v3
v1v2



,v1v2v3





=: Ḡ(v1,v2,v3,v2v3,v1v3,v1v2,v1v2v3)

where Ḡ(Ξ) is a convex function of Ξ=(ξ)i=1...7∈R
7.
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For radial motions the singular values are v1 =wR, v2 =v3 = w
R . For reasons re-

lated to the null-Lagrangian structure of an associated variational problem (outlined
in the following section) the stored energy will be expressed in the form
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where Ω and G are inhomogeneous functions defined by

Ω(V ;R) :=
(

v1,v2,v3,v2v3R,v1v3R,v1v2R,v1v2v3R
2
)

, (2.13)

G(Ξ;R) := Ḡ
(

ξ1,ξ2,ξ3,ξ4/R,ξ5/R,ξ6/R,ξ7/R
2
)

, (2.14)

V =(vi)i=1...3∈R
3, and Ξ=(ξ)i=1...7∈R

7. The convexity hypothesis on ¯̄G implies
that G(Ξ;R) is convex as a function of Ξ∈R

7. In summary,

W (∇y)=Φ
(

wR,
w

R
,
w

R

)

=G(Ω(Γ;R);R), (2.15)

where Γ=
(

wR,
w

R
,
w

R

)

. (2.16)

For simplicity of notation, we henceforth suppress the dependence on R and write
Ω(V )=Ω(V ;R) and G(Ξ)=G(Ξ;R).

Equation (2.11) can be expressed in the form

R2∂tv=
∂

∂R

(

R2Φ,1

(

wR,
w

R
,
w

R

)

)

−R(Φ,2 +Φ,3)
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wR,
w

R
,
w

R

)

,

∂tw=v.
(2.17)

The latter formally satisfies the conservation of mechanical energy identity

∂t

(

R2
(v2

2
+Φ(wR,w/R,w/R)

))

=∂R

(

R2vΦ,1 (wR,w/R,w/R)
)

. (2.18)

The mechanical energy and the associated energy flux provide an entropy-entropy
flux pair for (2.17), but the entropy is not in general convex. Using (2.15)-(2.16), the
derivatives Φ,j are expressed as

Φ,j(v1,v2,v3)=
∂

∂vj
G(Ω(V ))=

∂G

∂ξi
(Ω(V ))

∂Ωi

∂vj
(V ),

and (2.17)1 is written as

R2∂tv=∂R
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R2 ∂G

∂ξi
(Ω(Γ))

∂Ωi

∂v1
(Γ)

)

−R ∂G
∂ξi

(Ω(Γ))
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∂Ωi

∂v2
(Γ)+

∂Ωi

∂v3
(Γ)

)

.

(2.19)
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3. Null-Lagrangians and extensions of polyconvex radial elasticity

3.1. Null-Lagrangians. An alternative approach to derive (2.18) proceeds
by considering the extrema of the action functional

J [y]=

∫ T

0

∫ 1

0

(

1

2
w2

t −Φ
(

wR,
w

R
,
w

R

)

)

R2dRdt

and deriving (2.11) (for n=3) as the associated Euler-Lagrange equations. This
provides a connection with the calculus of variations.

Consider the functional associated to the equilibrium problem

I[w]=

1
∫

0

Ψ(wR,w/R,w/R;R)dR.

We ask for which integrands Ψ(v1,v2,v3;R) :R4→R the functional I admits zero
variational derivatives, δI

δw =0; such integrands are called null Lagrangians and they
satisfy the Euler-Lagrange equation

−∂R (Ψ,1)+R−1 (Ψ,2 +Ψ,3)=0 for all functionsw(R). (3.1)

If w=w(R,t) also depends on time, the evolution of a null Lagrangian Ψ is described
by

∂tΨ=∂R (Ψ,1∂tw) , (3.2)

where Ψ and Ψ,i are evaluated at (wR,w/R,w/R,R).

It is easily verified that Ψ(v1,v2,v3;R), selected by

v1, v1v2R, v1v3R, or v1v2v3R
2,

are null-Lagrangians. Applying (3.1) to Ωi, i=1,5,6,7, defined by (2.13), we get

−∂R

(

Ωi
,1(Γ)

)

+R−1
(

Ωi
,2(Γ)+Ωi

,3(Γ)
)

=0, i=1,5,6,7, (3.3)

with Γ=(wR,w/R,w/R) defined by (2.16).

3.2. A symmetrizable extension. The null-Lagrangian structure is used
in [8] to embed the equations of 3-d elastodynamics to a hyperbolic system endowed
with a convex entropy, and to construct a variational approximation scheme for the
problem. We follow this procedure in order to achieve an augmented system for radial
elastodynamics. The evolution in time of

Ω(Γ)=
(

wR,w/R,w/R,w
2/R,wRw,wRw,wRw

2
)

(3.4)

gives

∂tΩ
1(Γ)=∂t (wR)=∂Rv=∂R

(

Ω1
,1(Γ)v

)

,

∂tΩ
i(Γ)=∂t (w/R)=v/R=R−1

(

Ωi
,2(Γ)+Ωi

,3(Γ)
)

v for i=2,3,

∂tΩ
4(Γ)=∂t

(

w2/R
)

=2(w/R)v=R−1
(

Ω4
,2(Γ)+Ω4

,3(Γ)
)

v,

∂tΩ
i(Γ)=∂t (wRw)=∂R(wv)=∂R

(

Ωi
,1(Γ)v

)

for i=5,6,

∂tΩ
7(Γ)=∂t

(

wRw
2
)

=∂R(w2v)=∂R

(

Ω7
,1(Γ)v

)

.

(3.5)
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Note that (3.5)1,5,6,7 are precisely the equations (3.2) describing the evolution of null
Lagrangians. By contrast, (3.5)2,3,4 describe the evolution of lower-order terms and
do not have the structure of (3.2).

Equations (3.5) and (2.19) motivate an extension of radial elasticity:






























R2∂tv=∂R

(

R2 ∂G

∂ξi
(Ξ)

∂Ωi

∂v1
(Γ)

)

−R∂G
∂ξi

(Ξ)

(

∂Ωi

∂v2
(Γ)+

∂Ωi

∂v3
(Γ)

)

,

∂tw=v,

∂tξi =∂R

(

Ωi
,1(Γ)v

)

i=1,5,6,7,

∂tξi =R−1
(

Ωi
,2(Γ)+Ωi

,3(Γ)
)

v i=2,3,4,

(3.6)

where Γ=(wR,
w
R ,

w
R ), subject to the constraints

ξ2,ξ3>0, ξ7>0, (R,t)∈ (0,1)×(0,∞), (3.7)

and the boundary conditions w(1,t)= ξ2(1,t)= ξ3(1,t)=λ. System (3.6) describes
the evolution of the vector (v,w,Ξ), with Ξ∈R

7, and is provided with initial data
(v0,w0,Ξ0).

The extension has the following properties:

(i) If Ξ(·,0)=Ω(Γ0) where Γ0 =(w′
0,w0/R,w0/R), then Ξ(R,t)=Ω(Γ(R,t)), where Γ=

(wR,w/R,w/R). In other words, radial elasticity (2.17) can be viewed as a constrained
evolution of (3.6).

(ii) The enlarged system admits an entropy pair

∂t

(

R2

(

v2

2
+G(Ξ)

))

−∂R

(

R2 ∂G

∂ξi
(Ξ)

∂Ωi

∂v1
(Γ)v

)

=0, (3.8)

with strictly convex entropy

η(v,Ξ)=
v2

2
+G(Ξ). (3.9)

The identity (3.8) holds for general solutions (v,w,Ξ) of (3.6) and is derived upon
using the property (3.3) for the null Lagrangians (2.13).

3.3. An alternative extension with a convex entropy. System (3.6)
provides an extension of radial elasticity that is endowed with a convex entropy.
Concerning the objective of achieving a variational approximation, it has the drawback
that the constraint (3.7) of positivity for the variables ξ2,ξ3, and ξ7 is not preserved
at the level of time-step approximations. Although one can control the positivity of
ξ7 (the augmented variable standing for the determinant), it is not possible to control
the positivity of ξ2,ξ3. There are also difficulties in proving that minimizers satisfy
the corresponding Euler-Lagrange equations, the time-discretized system associated
to (3.6).

For this reason, we develop an alternative extension by combining the evolution
of null-Lagrangians with a change of variables used in Ball [3] for the equilibrium
problem. This extension induces a variational approximation scheme that preserves
the positivity of determinants.

The stored energy Φ is expressed in the form

Φ(v1,v2,v3)= Ḡ(v1,v2,v3,v2v3,v1v3,v1v2,v1v2v3)

=G(Ω(V ;ρ); ρ),
(3.10)



96 VARIATIONAL SCHEME FOR RADIAL ELASTICITY

where Ω and G are nonhomogeneous functions of ρ that are redefined so that

Ω(V ;ρ) :=
(

v1,v
3
2 ,v

3
3 ,v2v3ρ

1/3,v1v3ρ
1/3,v1v2ρ

1/3,v1v2v3ρ
2/3
)

, (3.11)

G(Ξ;ρ) := Ḡ
(

ξ1,ξ
1/3
2 ,ξ

1/3
3 ,ξ4/ρ

1/3,ξ5/ρ
1/3,ξ6/ρ

1/3,ξ7/ρ
2/3
)

. (3.12)

It is now assumed that G(Ξ;ρ) is a convex function of Ξ; this is a somewhat stronger
hypothesis than polyconvexity (which is convexity of Ḡ) because of the definition of
Ωi(V ;ρ), i=2,3, in (3.11). In the sequel any explicit ρ-dependence will be suppressed.

3.3.1. A change of variables. Following [3] we perform the change of
variables

ρ=R3 and α=w3. (3.13)

Then Γ=(wR,w/R,w/R) is expressed as

Γ=(αρ(ρ/α)2/3,(α/ρ)1/3,(α/ρ)1/3) (3.14)

and the stored energy reads

W (∇y)=Φ
(

αρ(ρ/α)2/3,(α/ρ)1/3,(α/ρ)1/3
)

=G(Ω(Γ;ρ); ρ),
(3.15)

where Ω and G are defined in (3.11), (3.12), and G(·;ρ) is convex.
The system (2.17) takes the form







































∂tv=∂ρ

(

3ρ2/3 ∂G

∂ξi
(Ω(Γ))

∂Ωi

∂v1
(Γ)

)

−ρ−1/3 ∂G

∂ξi
(Ω(Γ))

(

∂Ωi

∂v2
(Γ)+

∂Ωi

∂v3
(Γ)

)

,

∂t(α
1/3)=v,

α(1)=λ, α>0, αρ>0, (R,t)∈ (0,1)× [0,∞),

(3.16)

with the last inequalities encoding the constraints for solutions to represent elastic
motions. In the new variables, by (3.11),

Ω(Γ)=

(

αρ

α2/3
ρ2/3,

α

ρ
,
α

ρ
,
α2/3

ρ1/3
,
αρ

α1/3
ρ2/3,

αρ

α1/3
ρ2/3,αρρ

2/3

)

(3.17)

and, using (3.16)2, we compute

∂tΩ
1(Γ)=∂t

(

3ρ2/3∂ρ(α
1/3)

)

=3ρ2/3∂ρv,

∂tΩ
i(Γ)=∂t (α/ρ)=3α2/3v/ρ i=2,3,

∂tΩ
4(Γ)=∂t

(

α2/3/ρ1/3
)

=2α1/3v/ρ1/3,

∂tΩ
i(Γ)=∂t

(

(3/2)ρ2/3∂ρ(α
2/3)

)

=3ρ2/3∂ρ

(

α1/3v
)

i=5,6,

∂tΩ
7(Γ)=∂t

(

αρρ
2/3
)

=3ρ2/3∂ρ(α
2/3v).

(3.18)
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These identities are summarized in two groups as

∂tΩ
i(Γ)=3ρ2/3∂ρ(Ω

i
,1(Γ)v), i=1,5,6,7,

∂tΩ
i(Γ)=ρ−1/3(Ωi

,2(Γ)+Ωi
,3(Γ))v, i=2,3,4,

(3.19)

the former representing the evolution of null-Lagrangians and the latter the evolution
of lower order terms. The identities (3.3) satisfied by null-Lagrangians become

−3ρ2/3∂ρ

(

Ωi
,1(Γ)

)

+ρ−1/3
(

Ωi
,2(Γ)+Ωi

,3(Γ)
)

=0, i=1,5,6,7. (3.20)

3.3.2. The augmented system. Next, consider the augmented system



























∂tv=∂ρ

(

3ρ2/3G,i(Ξ)Ωi
,1(Γ)

)

−ρ−1/3G,i(Ξ)
(

Ωi
,2(Γ)+Ωi

,3(Γ)
)

,

∂tα
1/3 =v,

∂tξi =3ρ2/3∂ρ

(

Ωi
,1(Γ)v

)

, i=1,5,6,7,

∂tξi =ρ−1/3
(

Ωi
,2(Γ)+Ωi

,3(Γ)
)

v, i=2,3,4,

(3.21)

where Γ is given by (3.14), subject to the boundary conditions and constraints, re-
spectively,

α(1)=λ, α>0, αρ>0, (ρ,t)∈ (0,1)×(0,∞). (3.22)

The system (3.21)1-(3.21)4 is a second-order system describing the evolution of the
vector (v,α,Ξ) and is assigned initial data (v0,α0,Ξ0). It has the following properties:

(a) If Ξ(·,0)=Ω(Γ0) with Γ0 =
(

α′
0(ρ/α0)

2/3,(α0/ρ)
1/3,(α0/ρ)

1/3
)

, then Ξ=Ω(Γ) for
all times. In other words, radial elasticity (2.11) can be viewed as a con-
strained evolution of (3.21).

(b) The enlarged system admits an entropy pair

∂t

(

v2

2
+G(Ξ)

)

−∂ρ

(

3ρ2/3G,i(Ξ)Ωi
,1(Γ)v

)

=0 (3.23)

with (for convex G) convex entropy η(v,Ξ)= v2

2 +G(Ξ).

At this point we set

β=αρ/α
2/3, γ=α2/3,

Ξ=

(

βρ2/3,
α

ρ
,
α

ρ
,
γ

ρ1/3
,
3γρ

2
ρ2/3,

3γρ

2
ρ2/3,αρρ

2/3

)

, (3.24)

and proceed to simplify the extended system working with α,β,γ,v as the independent
variables.

Taking a closer look at the extended system we see that ξ2 = ξ3 by construction
and hence equations (3.21)2, i=2,3 are identical. Moreover,

∂tξ2 =3α2/3v/ρ ⇒ ∂tξ7 =ρ2/3∂ρ(ρ∂tξ2),

∂tξ4 =2α1/3v/ρ1/3 ⇒ ∂tξ5 =∂tξ6 =
3

2
ρ2/3∂ρ

(

ρ1/3∂tξ4

)

.
(3.25)
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Hence (3.21) is overdetermined and extra equations (3.21)2, i=5,6,7 and (3.21)3, i=3
can be excluded. In explicit form the extension is written as



































∂tv=∂ρ

(

3ρ2/3G,i(Ξ)Ωi
,1(Γ)

)

−ρ−1/3G,i(Ξ)
(

Ωi
,2(Γ)+Ωi

,3(Γ)
)

,

∂tβ=∂ρ(3v),

∂tα=3α2/3v,

∂tγ=2α1/3v,

α(1)=λ, α>0, αρ>0, (ρ,t)∈ (0,1)× [0,∞),

(3.26)

where from (3.26)3 and (3.26)4 we can derive the excluded equations

∂tαρ =∂ρ(3α
2/3v),

∂tγρ =∂ρ(2α
1/3v).

(3.27)

4. Variational approximation scheme
In this section we introduce a variational approximation scheme for the radial

equation of elastodynamics. The general approach is to discretize the extended system
by use of implicit-explicit scheme.

Successive iterates are constructed by discretizing (3.21) as follows: Given the
(j−1)th iterate (α0,β0,γ0,v0) with α0(ρ)>0 and α′

0(ρ)>0, ρ∈ (0,1), we define Ξ0 =
(ξ0i )7i=1 by

Ξ0(ρ)=

(

β0ρ
2/3,

α0

ρ
,
α0

ρ
,
γ0

ρ1/3
,
3γ′0
2
ρ2/3,

3γ′0
2
ρ2/3,α′

0ρ
2/3

)

(4.1)

and construct the jth iterate (α,β,γ,v), with corresponding Ξ=(ξi)
7
i=1 defined by

Ξ(ρ)=

(

βρ2/3,
α

ρ
,
α

ρ
,
γ

ρ1/3
,
3γ′

2
ρ2/3,

3γ′

2
ρ2/3,α′ρ2/3

)

, (4.2)

by solving














































(v−v0)/h=
d

dρ

(

3ρ2/3G,i(Ξ)Ωi
,1(Γ

0)
)

−ρ−1/3G,i(Ξ)
(

Ωi
,2(Γ

0)+Ωi
,3(Γ

0)
)

,

(ξi−ξ0i )/h=3ρ2/3 d

dρ

(

Ωi
,1(Γ

0)v
)

, i=1,5,6,7,

(ξi−ξ0i )/h=ρ−1/3
(

Ωi
,2(Γ

0)+Ωi
,3(Γ

0)
)

v, i=2,3,4,

ξ2(1)= ξ3(1)=λ, ξ2,ξ3 >0, ξ7>0, ρ∈ (0,1),

(4.3)

where

Γ=(α′(ρ/α)2/3,(α/ρ)1/3,(α/ρ)1/3), (4.4)

Γ0 =(α′
0(ρ/α0)

2/3,(α0/ρ)
1/3,(α0/ρ)

1/3). (4.5)

As in the continuous case the discrete system (4.3) is overdetermined with extra
equations

(

αρ−α0ρ

)

/h=
d

dρ

(

3α0
2/3v

)

,

(

γρ−γ0ρ

)

/h=
d

dρ

(

2α0
1/3v

)

,

(4.6)
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corresponding to (4.3)2, i=5,6,7. Excluding them from the system above we get



























































(v−v0)/h=
d

dρ

(

3ρ2/3G,i(Ξ)Ωi
,1(Γ

0)
)

−ρ−1/3G,i(Ξ)
(

Ωi
,2(Γ

0)+Ωi
,3(Γ

0)
)

,

(β−β0)/h=
d

dρ
(3v),

(α−α0)/h=3α0
2/3v,

(γ−γ0)/h=2α0
1/3v,

α(1)=λ, α>0, α′>0, ρ∈ (0,1).

(4.7)

Note that Equation (4.6) can be derived from (4.7)3,4.

Time-step approximations capture a subtle form of dissipation associated with
the underlying variational structure and the convexity of the entropy [7, 8]. Indeed,
solutions of (4.7) satisfy a discrete entropy inequality; to see that, consider a smooth
solution (Ξ,v) of (4.3) associated to smooth data (Ξ0,v0) given by (4.1). Multiplying
(4.3)1 by v we get

v(v−v0)
h

+G,i(Ξ)

(

3ρ2/3Ωi
,1(Γ

0)
dv

dρ
+ρ−1/3

(

Ωi
,2(Γ

0)+Ωi
,3(Γ

0)
)

v

)

=
d

dρ

(

3ρ2/3G,i(Ξ)Ωi
,1(Γ

0)v
)

.

(4.8)

Then denoting

Ai =3ρ2/3Ωi
,1(Γ

0)
dv

dρ
+ρ−1/3

(

Ωi
,2(Γ

0)+Ωi
,3(Γ

0)
)

v, i=1,... ,7, (4.9)

we claim

Ai =
ξi−ξ0i
h

. (4.10)

Indeed, for i=2,3,4 we have Ωi
,1 =0 and hence (4.3)3 and (4.9) imply (4.10). For

i=1,5,6,7, by the properties (3.20) of null Lagrangians and (4.3)2 we get

Ai =v

(

−3ρ2/3 d

dρ

(

Ωi
,1(Γ

0)
)

+ρ−1/3
(

Ωi
,2(Γ

0)+Ωi
,3(Γ

0)
)

)

+3ρ2/3 d

dρ

(

Ωi
,1(Γ

0)v
)

=
(

ξi−ξ0i
)

/h, i=1,5,6,7.

(4.11)

Thus (4.8) and (4.10) imply

1

h

(

v(v−v0)+G,i(Ξ)
(

ξi−ξ0i
))

=
d

dρ

(

3ρ2/3G,i(Ξ)Ωi
,1(Γ

0)v
)

.

Now, we denote Θ=(v,Ξ) and Θ0 =(v0,Ξ
0). Then η=1/2v2 +G(Ξ) satisfies

1

h
Dη ·

(

Θ−Θ0
)

− d

dρ

(

3ρ2/3G,i(Ξ)Ωi
,1(Γ

0)v
)

=0.
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For G convex the following identity holds:

η(Θ)−η(Θ0)

h
− d

dρ

(

3ρ2/3G,i(Ξ)Ωi
,1(Γ

0)v
)

60. (4.12)

Remark 4.1. We have not studied in this article the convergence as the time-step
h→0. For the three-dimensional elasticity equations this process produces measure-
valued solutions [8] while for one-dimensional elasticity it gives entropy weak solutions
[7]. In the present case we would expect to obtain weak solutions, but the compactness
properties of (1.4) are not at present sufficiently understood. There are two differ-
ences of (1.4) relative to the well understood compactness theory of one-dimensional
elasticity: the dependence of the stress on lower order terms, and the singularity at
R=0. Nevertheless, if the iterates uh, vh converge strongly, the discrete entropy
inequality (4.12) gives a weak solution dissipating the mechanical energy.

5. Existence of minimizers

Henceforth, we consider stored-energy functions (3.10) of the form

Φ(v1,v2,v3)= Ḡ(v1,v2,v3,2v3,v1v3,v1v2,v1v2v3)

=ϕ(v1)+ϕ(v2)+ϕ(v3)+g(v2v3)+g(v1v3)+g(v1v2)+h(v1v2v3).
(5.1)

Then, the function G defined in (3.12) reads

G(Ξ;ρ)=ϕ(ξ1)+ϕ
(

ξ
1/3
2

)

+ϕ
(

ξ
1/3
3

)

+g
(

ξ4ρ
1/3
)

+g
(

ξ5ρ
1/3
)

+g
(

ξ6ρ
1/3
)

+h(ξ7ρ
2/3).

(5.2)

Now, define ψ(x)=ϕ(x1/3). Then, with Ξ defined in (4.2), the above is expressed by

G(Ξ)=ϕ(βρ2/3)+2ψ (α/ρ)+g
(

γ/ρ2/3
)

+2g
(

3γ′ρ1/3/2
)

+h(α′). (5.3)

We place the following assumptions on the functions ϕ, ψ, g, h appearing above:

(A1) limδ→0+h(δ)= limδ→+∞h(δ)/δ=+∞;
(A2) ϕ,ψ,g∈C2(R) and h∈C2(R+) satisfy

ϕ,ψ,g,h,ϕ′′,ψ′′,g′′ >0 and h′′>0; (5.4)

(A3) For 1<p,q<∞ and some constants c1,c2>0,

lim
x→∞

ϕ(x)

|x|3p
= lim

x→∞

ψ(x)

|x|p = c1, lim
x→∞

g(x)

|x|q = c2; (5.5)

(A4) For 1<p,q<∞ as in (A3) and C1,C2,C3>0,

limsup
x→∞

|ϕ′(x)|
|x|3p−1

≤C1 limsup
x→∞

|ψ′(x)|
|x|p−1

≤C2, limsup
x→∞

|g′(x)|
|x|q ≤C3; (5.6)

In particular, G is convex.
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We define spaces of functions on the interval ρ∈ (0,1)

X1 =
{

f(ρ)∈W 1,1(0,1) : f/ρ∈Lp(0,1)
}

,

X2 =
{

f(ρ)∈L1
loc(0,1) : fρ2/3∈L3p(0,1)

}

,

X3 =
{

f(ρ)∈W 1,1
loc (0,1) : f/ρ2/3∈Lq, f ′ρ1/3∈Lq(0,1)

}

,

Y =
{

f(ρ)∈W 1,1
loc (0,1) : f ∈L2, f ′ρ2/3∈L3p(0,1)

}

,

and

X=X1⊗X2⊗X3⊗Y.

We fix a parameter λ>0 and for the initial data (α0,β0,γ0,v0)∈X we require















α0(1)=λ, α0 >0, α′
0>0, a.e.ρ∈ (0,1),

1
∫

0

1

2
v0

2 +G(Ξ0)dρ <∞.
(5.7)

Consider the problem of minimizing the functional

I(α,β,γ,v)=

1
∫

0

{

1

2
(v−v0)2 +G(Ξ)

}

dρ

=

1
∫

0

{

1

2
(v−v0)2 +ϕ(βρ2/3)+2ψ (α/ρ)

+g
(

γ/ρ2/3
)

+2g
(

3γ′ρ1/3/2
)

+h(α′)
}

dρ

(5.8)

over the admissible set

Aλ ={(α,β,γ,v)∈X :α(0)>0, α(1)=λ, α′>0a.e.and

I(α,β,γ,v)<∞,
(β−β0)

h
=3v′,

(α−α0)

h
=3α0

2/3v,
(γ−γ0)

h
=2α0

1/3v}.

(5.9)

We note that I is well-defined for (α,β,γ,v)∈X with α′>0 a.e. ρ∈ (0,1), though I
might be equal to ∞.

Lemma 5.1. The admissible set Aλ is nonempty.

Proof. Take (α,β,γ,v)=(α0,β0,γ0,0)∈X. Then (5.7) implies α(0)>0, α(1)=λ,
α′>0 a.e., and

I(α,β,γ,v)=

1
∫

0

{

1

2
v0

2 +G(Ξ0)

}

dρ <∞.

Moreover the following holds: (β−β0)/h=0=3v′, (α−α0)/h=0=3α0
2/3v, and (γ−

γ0)/h=0=2α0
1/3v. Hence (α,β,γ,v)∈Aλ.
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Lemma 5.2 (I-bounded sequences). Let {(αn,βn,γn,vn)}n∈N
⊂Aλ and

M =sup
n∈N

I(αn,βn,γn,vn)<∞. (5.10)

Then ∃ (α,β,γ,v)∈X and a subsequence {(αµ,βµ,γµ,vµ)} s.t.

αµ⇀α in W 1,1, αµ/ρ⇀α/ρ in Lp,

γµ/ρ
2/3⇀γ/ρ2/3 in Lq, γ′µρ

1/3⇀γ′ρ1/3 in Lq,

vµ⇀v in L2, v′µρ
2/3⇀v′ρ2/3 in L3p,

βµρ
2/3⇀βρ2/3 in L3p.

(5.11)

Proof. First, αn >0, α′
n>0 a.e. and αn(1)=λ imply that |αn|6λ. Second,

from (5.10) it follows that
∫ 1

0
h(α′

n)dρ<M, ∀n. By the de la Vallée Poussin criterion
there exists α∈W 1,1 and a subsequence {αs} such that αs⇀α weakly in W 1,1.

By (A3) there exist constants C1,C2 s.t. ϕ(x)>C1|x|3p−C2, ψ(x)>C1|x|p−C2,
and g(x)>C1|x|q −C2, and thus

M >I(αs,βs,γs,vs)

>

1
∫

0

1

2
(vs−v0)2dρ+C1

1
∫

0

|βsρ
2/3|3p +2|αs/ρ|p + |γs/ρ

2/3|q +
3

2
|γ′sρ1/3|q dρ−4C2.

(5.12)
This implies, for 1<p,q<∞, that α/ρ∈Lp and there exist β∈X2,γ∈X3, v∈L2, and
a subsequence {αµ,βµ,γµ,vµ} of {αs,βs,γs,vs} such that (5.11)2,3,4,5,6 hold.

Finally, as (αµ,βµ,γµ,vµ)∈Aλ we have 3v′µρ
2/3 =(βµ−β0)ρ

2/3/h. Then by

(5.11)3 we get 3v′µρ
2/3⇀ (β−β0)ρ

2/3/h in L3p. It follows from (5.11)6 that for each
f ∈C∞

0 (0,1)

∫ 1

0

vf ′dρ= lim
µ→∞

∫ 1

0

vµf
′dρ

=− lim
µ→∞

∫ 1

0

v′µf dρ=−
∫ 1

0

1

3h
(β−β0)f dρ,

(5.13)

and hence v′ =(β−β0)/3h. Therefore v∈Y and v′µρ
2/3⇀v′ρ2/3.

Theorem 5.3 (Lower semi-continuity). Let {(αn,βn,γn,vn)}n∈N ⊂Aλ,
(α,β,γ,v)∈X satisfy (5.10) and (5.11). Then (α,β,γ,v)∈Aλ and

I(α,β,γ,v)6 liminf
n→∞

I(αn,βn,γn,vn)=s<∞. (5.14)

Proof. By hypothesis 06 In = I(αn,βn,γn,vn)6M , ∀n∈N and thus s<∞.
Recall that αn⇀α weakly in W 1,1 and (along a subsequence) uniformly on C[0,1].
Since αn(1)=λ we obtain α(1)=λ. Moreover,

lim
n→∞

∫ 1

0

α′
nχ{α′<0}dρ=

∫ 1

0

α′χ{α′<0}dρ. (5.15)

Since α′
n>0 a.e. we obtain

∫ 1

0
α′χ{α′<0}dρ>0, and thus m{α′<0}=0.
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Now, denote A={ρ∈ (0,1) : α′ =0} and show that m(A)=0. We will argue by
contradiction. Assume that m(A)=ε>0. Then (5.11) implies

lim
n→∞

∫ 1

0

α′
nχAdρ=

∫ 1

0

α′χAdρ=0. (5.16)

Then, as α′
n>0 a.e., limn→∞

∫ 1

0
|α′

nχA|dρ=0. Hence α′
nχA →0 in L1. We extract a

subsequence
{

α′
nk

}

such that α′
nk
χA →0 a.e. ρ∈ (0,1). Now, by Egoroff’s theorem

there exists a measurable set B⊂A such that m(B)>ε/2 and α′
nk

→0 uniformly on
B. Next, observe that

∫ 1

0

h(α′
nk

)dρ≥
∫

B

h(α′
nk

)dρ≥m(B)

(

inf
ρ∈B

h(α′
nk

)

)

=:m(B)µnk

Since µnk
→∞ this contradicts (5.10). We conclude that m(A)=0.

Next we prove α>0 a.e. ρ∈ (0,1). Again (5.11)1 implies

lim
n→∞

∫ 1

0

αnχ{α<0}dρ=

∫ 1

0

αχ{α<0}dρ ≥ 0, (5.17)

and thus m{α<0}=0. This concludes that α satisfies all restrictions of membership
in Aλ.

Next, by (A2) we get

ϕ(βnρ
2/3) > ϕ(βρ2/3)+ϕ′(βρ2/3)(βn−β)ρ2/3,

ψ (αn/ρ) > ψ (α/ρ)+ψ′ (α/ρ)(αn−α)/ρ,

g
(

γn/ρ
2/3
)

> g
(

γ/ρ2/3
)

+g′
(

γ/ρ2/3
)

(γn−γ)/ρ2/3,

g
(

3γ′nρ
1/3/2

)

> g
(

3γ′ρ1/3/2
)

+g′
(

3γ′ρ1/3/2
)

(γ′n−γ)3ρ1/3/2

(5.18)

a.e. ρ∈ (0,1). As (α,β,γ,v),(αn,βn,γn,vn)∈X, from (A3) it follows that the right
hand side of each of the inequalities in (5.18) are integrable and

ϕ′(βρ2/3)∈L
3p

3p−1 , ψ′ (α/ρ)∈L
p

p−1 ,

and g′
(

γ/ρ2/3
)

,g′
(

3γ′nρ
1/3/2

)

∈L
q

q−1 .
(5.19)

Take an arbitrary 0<δ<1 and set Aδ ={ρ∈ (0,1) : δ6α′ 61/δ}. Then by (A2)

h(α′
n)>h(α′)χAδ

+h′(α′)(α′
n−α′)χAδ

a.e. ρ∈ (0,1). (5.20)

Moreover, (A1) and (A2) together imply

0 6 h(α′)χAδ
+ |h′(α′)|χAδ

6 2max(h(δ),h(1/δ),|h′(δ)|,|h′(1/δ)|).

Hence

h(α′)χAδ
, h′(α′)χAδ

∈L∞, (5.21)

and we conclude that the right hand side of (5.20) is integrable.
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Finally,

(vn−v0)2 > (v−v0)2 +2(v−v0)(vn−v) a.e.ρ∈ (0,1), (5.22)

where right hand side is integrable as v,vn,v0∈L2.

Following the discussion above, (5.18)-(5.22) imply

In >

∫ 1

0

{

1

2
(v−v0)2 +ϕ(βρ2/3)+2ψ (α/ρ)

+g
(

γ/ρ2/3
)

+2g
(

3γ′ρ1/3/2
)}

dρ+

∫ 1

0

h(α′)χAδ
dρ

+

∫ 1

0

{

(v−v0)(vn−v)+ϕ′(βρ2/3)(βn−β)ρ2/3

+2ψ′ (α/ρ)(αn−α)/ρ+g′
(

γ/ρ2/3
)

(γn−γ)/ρ2/3

+g′
(

3γ′ρ1/3/2
)

(γ′n−γ)3ρ1/3 +h′(α′)χAδ
(α′

n−α′)
}

dρ

=J+Jδ +Jn.

Then, letting n→∞, we obtain

∞> s= liminf
n→∞

In > J+Jδ +liminf
n→∞

Jn.

Now from (5.11), (5.19), (5.21), and v−v0∈L2 it follows that limn→∞Jn =0 and
hence

∞> s= liminf
n→∞

In > J+

∫ 1

0

h(α′)χAδ
dρ. (5.23)

Now, as α′>0 a.e. ρ∈ (0,1) and α′∈L1, the set {α′ =0}⋃{α′ =∞} is of measure
zero, and hence

lim
δ→0+

h(α′)χAδ
=h(α′)χ{0<α′<∞} =h(α′) a.e.ρ∈ (0,1). (5.24)

Finally, let δ→0+. Then from (5.23), (5.24), and the Monotone Convergence Theo-
rem it follows that

∞> s= liminf
n→∞

In > J+

∫ 1

0

h(α′)dρ= I(α,β,γ,v)

and hence (5.14) holds. Since (αn,βn,γn,vn)∈Aλ, and the other constraints are linear,
one easily checks that the limiting (α,β,γ,v)∈Aλ.

Theorem 5.4 (Existence). There exists (α,β,γ,v)∈Aλ satisfying

I(α,β,γ,v)= inf
Aλ

I(ᾱ,β̄, γ̄, v̄). (5.25)

Proof. As Aλ is nonempty, we can set s=infAλ
I(ᾱ,β̄, γ̄, v̄). Then by definition

of Aλ we have I(ᾱ,β̄, γ̄, v̄)<∞ for each (ᾱ,β̄, γ̄, v̄)∈Aλ. This implies that s is finite.
Next, by definition of s there exists {(αn,βn,γn,vn)}n∈N

∈Aλ such that
limn→∞ In =s with In = I(αn,βn,γn,vn). Then, as {In}n∈N

is bounded, Lemma 5.2
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and Theorem 5.3 imply that ∃(α,β,γ,v)∈Aλ satisfying I(α,β,γ,v)6 liminfn→∞ In =
s. In this case the definition of s implies I(α,β,γ,v)=s.

Theorem 5.5 (Uniqueness). The minimizer (α,β,γ,v)∈Aλ of I over Aλ is
unique.

Proof. We will argue by contradiction. Assume (α,β,γ,v),(ᾱ,β̄, γ̄, v̄)∈Aλ are

two distinct minimizers. Then we consider (α+ᾱ
2 , β+β̄

2 , γ+γ̄
2 , v+v̄

2 ) and notice that it
also belongs to Aλ.

Define A={ρ∈ (0,1) : α′ 6= ᾱ′}. Then mA>0. Indeed, if α′ = ᾱ′ a.e., then α(1)=
ᾱ(1)=λ implies α= ᾱ. In turn, this implies v= v̄′, β= β̄, and γ= γ̄, which contradicts
to the assumption that (α,β,γ,v) and (ᾱ,β̄, γ̄, v̄) are distinct.

Now, as h′′>0, we have

h(α′)+h(ᾱ′)

2
> h

(

α′+ ᾱ′

2

)

, ρ∈A,

and thus, as mA is positive,

∫ 1

0

h(α′)+h(ᾱ′)

2
dρ >

∫ 1

0

h

(

α′+ ᾱ′

2

)

dρ.

Let s=infAλ
I(α̃,β̃, γ̃, ṽ). Then by the inequality above and convexity of ϕ,ψ and

g we obtain

s=
I(α,β,γ,v)+I(ᾱ,β̄, γ̄, v̄)

2
> I

(

α+ ᾱ

2
,
β+ β̄

2
,
γ+ γ̄

2
,
v+ v̄

2

)

, (5.26)

which, since
(

α+ᾱ
2 , β+β̄

2 , γ+γ̄
2 , v+v̄

2

)

∈Aλ, contradicts the definition of s. Hence

(α,β,γ,v)=(ᾱ,β̄, γ̄, v̄).

6. Euler-Lagrange equations
Next, we show that the minimizer of I satisfies the system (4.3) a.e. ρ∈ (0,1). To

this end, in addition to (5.7), we assume that the initial iterate (α0,β0,γ0,v0) satisfies
for each δ∈ (0,1)

α′
0∈L3p(δ,1)

⋂

Lq(δ,1). (6.1)

Theorem 6.1 (Weak Form). Let (α,β,γ,v)∈Aλ be the minimizer of I over
Aλ and the initial iterate (α0,β0,γ0,v0) satisfy (5.7) and (6.1). Let also

G1(ρ)=G,i(Ξ)Ωi
,1(Γ

0) (6.2)

and

G2(ρ)=G,i(Ξ)
(

Ωi
,2(Γ

0)+Ωi
,3(Γ

0)
)

. (6.3)

Then, for each δ∈ (0,1),

ρ2/3G1(ρ)∈W 1,1(δ,1), ρ−1/3G2(ρ)∈L1(δ,1),

and for a.e. ρ∈ (0,1)

3ρ2/3G1(ρ)=

∫ ρ

1

(

s−1/3G2(s)+
v(s)−v0(s)

h

)

ds+const. (6.4)
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Moreover, for each δ∈ (0,1),

α′∈L3p(δ,1)
⋂

Lq(δ,1). (6.5)

Proof. Fix k∈N and define Sk ={ρ∈ [1/k,1) : 1/k<α′<k}. Let f ∈L∞ with
∫

Sk
f dρ=0. We denote χk =χ

Sk
, lk =α0(1/k), and set

µ(ρ)=

∫ ρ

0

χk(s)f(s)ds. (6.6)

Before proceeding further we make the following remark. Let t∈R and F (x)=
xt,x∈R+. Take δ∈ (0,1). Then, as α0∈W 1,1, α0 >0, and α′

0>0 a.e. ρ∈ (0,1) we

must have 0<α0(δ)6α0 6λ for all ρ∈ (δ,1). Hence |F ′(α0)|6 t(α0(δ)+λ)
t−1

for all
ρ∈ (δ,1). Therefore we conclude that for each t∈R and δ∈ (0,1)

α0
t ∈W 1,1(δ,1) with

d

dρ

(

α0
t
)

= tα0
t−1α′

0. (6.7)

(i) Step 1. Definition of the variation. For |ε|< 1
6k(‖f‖∞+1) we define (αε,βε,γε,vε)

by

vε =v+ε
µ

hα0
2/3

,

αε =α0 +h
(

3vεα0
2/3
)

=α+3εµ,

βε =β0 +h(3v′ε)=β+3ε

(

µ

α0
2/3

)′

,

γε =γ0 +h
(

2vεα0
1/3
)

=γ+2ε
µ

α0
1/3

.

(6.8)

Due to (6.7), (αε,βε,γε,vε) is well-defined. We next prove:

Lemma 6.2. The variation (αε,βε,γε,vε)∈Aλ.

Proof. First, we notice that

(αε,βε,γε,vε)=(α,β,γ,v) if ρ∈ (0,1/k). (6.9)

Then we check that

αε(1)=α(1)+3ε

∫

Sk

f(s)ds=λ.

Next, we see that α′
ε =α′+3εχkf and therefore

α′
ε =α′, ρ /∈Sk,

1

2k
6α′

ε 6k+1, ρ∈Sk.
(6.10)

This implies that αε>0 a.e. ρ∈ (0,1) and hence (6.9) implies αε >0.

Now we make the following estimates. First, we see that

|µ′|+
∣

∣

∣

∣

µ

ρ

∣

∣

∣

∣

+

∣

∣

∣

∣

µ

ρ2/3α0
1/3

∣

∣

∣

∣

+

∣

∣

∣

∣

µ

hα0
2/3

∣

∣

∣

∣

6‖f‖∞

(

1+k+
k2/3

l
1/3
k

+
1

hl
2/3
k

)
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and, for j=1,2,
∣

∣

∣

∣

∣

(

µ

α0
j/3

)′
∣

∣

∣

∣

∣

6‖f‖∞
(

l
−j/3
k + l

−(1+j/3)
k |α′

0|
)

.

Thus we conclude that there exists C such that ∀ρ∈ (1/k,1)

|α′
ε−α′|+ |αε/ρ−α/ρ|+ |γε/ρ

2/3−γ/ρ2/3|+ |v−vε|6εC (6.11)

and

|βερ
2/3−βρ2/3|+ |γ′ερ1/3−γ′ρ1/3|6εC (1+ |α′

0|) . (6.12)

As (α,β,γ,v)∈X, the last two inequalities imply (αε,βε,γε,vε)∈X.

Further, by (A3), (6.11), and (6.12) we conclude that there exists C such that for
all ρ∈ (1/k,1)

ψ(αε/ρ) 6 C (|α/ρ|p +1),

ϕ(βερ
2/3) 6 C

(

|βρ2/3|3p + |α′
0|3p +1

)

,

g(γε/ρ
2/3) 6 C

(

|γ/ρ2/3|q +1
)

,

g(3γ′ερ
1/3/2) 6 C

(

|γ′ρ1/3|q + |α′
0|q +1

)

.

By (6.10) we also have

h(α′
ε)=h(α′), ρ /∈Sk,

h(α′
ε)6 max

1

2k 6δ6k
|h(δ)|=Mk, ρ∈Sk,

(6.13)

and hence

h(α′
ε)6h(α′)+Mk, ρ∈ (0,1). (6.14)

Now, similarly to (4.2), set

Ξε =

(

βερ
2/3,

αε

ρ
,
αε

ρ
,
γε

ρ1/3
,
3γ′ε
2
ρ2/3,

3γ′ε
2
ρ2/3,α′

ερ
2/3

)

. (6.15)

Then, by the discussion above, it follows that

G(Ξε)+
(vε−v0)2

2
=G(Ξ)+

(v−v0)2
2

, ρ∈ (0,1/k), (6.16)

and there exists C such that for ρ∈ (1/k,1)

G(Ξε)+
(vε−v0)2

2
6C

(

1+ |βρ2/3|3p + |α′
0|3p + |α/ρ|p + |γ/ρ2/3|q

+|γ′ρ1/3|q + |α′
0|q + |v|2 + |v0|2 +h(α′)

)

.

(6.17)

As I(α,β,γ,v)<∞, (6.16) and (6.17) imply I(αε,βε,γε,vε)<∞ and hence by con-
struction and the above discussion we get (αε,βε,γε,vε)∈Aλ.
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Step 2. The next objective is to validate the formal identity

d

dε
I(αε,βε,γε,vε)

∣

∣

∣

∣

ε=0

=

∫ 1

0

d

dε

(

(vε−v0)2
2

+G(Ξε)

)∣

∣

∣

∣

ε=0

dρ=0. (6.18)

This will require several detailed estimations presented below.

At this point, let us make estimates of the following difference quotients on the
interval ρ∈ (1/k,1). First, by (6.11) we get

1

ε
|(vε−v0)2−(v−v0)2|=

1

ε
|vε−v||vε +v−2v0|

6C (|v|+ |v0|+1) .
(6.19)

Further, by the Mean Value Theorem

1

ε
|ϕ(βερ

2/3)−ϕ(βρ2/3)|= 1

ε
|ϕ′(τε)||βερ

2/3−βρ2/3|,

where min(β,βε)ρ
2/3 6 τε 6max(β,βε)ρ

2/3. Hence from (6.12) it follows |τε|6
|βρ2/3|+εC(|α′

0|+1) and therefore (A4) implies

|ϕ′(τε)|6C
(

|βρ2/3|3p−1 + |α′
0|3p−1 +1

)

.

Thus

1

ε
|ϕ(βερ

2/3)−ϕ(βρ2/3)|

6C
(

|βρ2/3|3p−1 + |α′
0|3p−1 +1

)

(|α′
0|+1).

(6.20)

Similarly,

1

ε
|ψ(αε/ρ)−ψ(α/ρ)|= 1

ε
|ψ′(τε)||αε/ρ−α/ρ|,

where min(αε,α)/ρ6 τε 6max(αε,α)/ρ. Hence |τε|6 |α/ρ|+εC and (A4) implies

|ψ′(τε)|6C
(

(|α/ρ|+1)p−1 +1
)

,

and hence

1

ε
|ψ(αε/ρ)−ψ(α/ρ)|6C

(

(|α/ρ|+1)p−1 +1
)

. (6.21)

Next,

1

ε
|g(γε/ρ

2/3)−g(γ/ρ2/3)|= 1

ε
|g′(τε)||γε/ρ

2/3−γ/ρ2/3|,

where min(γε,γ)/ρ
2/3 6 |τε|6max(γε,γ)/ρ

2/3 and hence |τε|6 |γ/ρ2/3|+εC. Then by
(A4)

|g′(τε)|6C
(

(|γ/ρ2/3|+1)q−1 +1
)

,

and hence

1

ε
|g(γε/ρ

2/3)−g(γ/ρ2/3)|6C
(

(|γ/ρ2/3|+1)q−1 +1
)

. (6.22)



A. MIROSHNIKOV AND A. E. TZAVARAS 109

Further,

1

ε
|g(3γ′ερ1/3/2)−g(3γ′ρ1/3/2)|= 3

2ε
|g′(τε)||γ′ερ1/3−γ′ρ1/3|,

where 3
2 min(γ′ε,γ

′)ρ1/3 6 |τε|6 3
2 max(γ′ε,γ

′)ρ1/3. Hence we must have |τε|6
3
2

(

|γ′ρ1/3|+εC(|α′
0|+1)

)

. Then (A4) implies

|g′(τε)|6C
(

(|γ′ρ1/3|+ |α′
0|+1)q−1 +1

)

,

and hence

1

ε
|g(3γ′ερ1/3/2)−g(3γ′ρ1/3/2)|

6C
(

(|γ′ρ1/3|+ |α′
0|+1)q−1 +1

)

(|α′
0|+1).

(6.23)

Finally, if ρ /∈Sk then 1
ε |h(α′

ε)−h(α′)|=0, and if ρ∈Sk we get

1

ε
|h(α′

ε)−h(α′)|= 1

ε
|h′(τε)||α′

ε−α′|,

where min(α′
ε,α

′)6 τε 6max(α′
ε,α). Then by (6.10)2 we get 1

2k 6 τε 6k+1 and hence

|h′(τε)|6 max
1

2k 6δ6k+1
|h′(δ)|.

Thus by (6.11) we conclude that for ρ∈ (1/k,1)

1

ε
|h(α′

ε)−h(α′)|6C. (6.24)

Thus (6.16),(6.19)-(6.24) and the assumptions on the initial iterate (5.7) and (6.1)
imply that

1

ε

∣

∣

∣

∣

G(Ξε)+
(vε−v0)2

2
−G(Ξ)− (v−v0)2

2

∣

∣

∣

∣

is bounded on (0,1) by an integrable function. Letting ε→0, and using the Dominated
Convergence theorem, (A2) and the fact that (α,β,γ,v) is the minimizer, we obtain
the identity (6.18).

Step 3. Conclusion of the computation. The last step is to compute the right
hand side of (6.18). Note first that

dΞ1
ε

dε
=
d

dε
βερ

2/3 =3

(

µ

α0
2/3

)′

ρ2/3,

dΞ2
ε

dε
=
dΞ3

ε

dε
=
d

dε

(

αε

ρ

)

=
3µ

ρ
,

dΞ4
ε

dε
=
d

dε

(

γε

ρ1/3

)

=
2µ

α0
1/3ρ1/3

,

dΞ5
ε

dε
=
dΞ6

ε

dε
=
d

dε

(

3

2
γ′ερ

2/3

)

=3

(

µ

α0
1/3

)′

ρ2/3,

dΞ7
ε

dε
=
d

dε

(

α′
ερ

2/3
)

=3µ′ρ2/3,
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and

dvε

dε
=

µ

hα0
2/3

.

Then the integrand in (6.18) is expressed by

(v−v0)
dvε

dε

∣

∣

∣

∣

ε=0

+G,i(Ξ)
dΞi

ε

dε

∣

∣

∣

∣

ε=0

=aµ+bµ′,

where

a(ρ)=−G,1(Ξ)
2α′

0

α0
5/3

ρ2/3 +G,2(Ξ)
3

ρ
+G,3(Ξ)

3

ρ

+G,4(Ξ)
2

α0
1/3ρ1/3

−(G,5(Ξ)+G,6(Ξ))
α′

0

α0
4/3

ρ2/3 +
(v−v0)
hα0

2/3

(6.25)

and

b(ρ)=
3ρ2/3

α0
2/3

(

G,1(Ξ)+G,5(Ξ)α0
1/3 +G,6(Ξ)α0

1/3 +G,7(Ξ)α0
2/3
)

. (6.26)

Thus by (6.18) we have (aµ+bµ′)∈L1 and

∫ 1

1/k

(aµ+bµ′)dρ=0. (6.27)

Now, we claim a∈L1(1/k,1). By (A3) and definition (5.2) of G it follows that
for ρ∈ (1/k,1)

∣

∣

∣

∣

G,1(Ξ)
α′

0

α0
5/3

ρ2/3

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

ϕ′(βρ2/3)α0
′

l
5/3
k

∣

∣

∣

∣

∣

6C
(

|βρ2/3|3p−1 +1
)

|α′
0|,

1

ρ
|G,2(Ξ)+G,3(Ξ)|62k |ψ′(α/ρ)|6C

(

|α/ρ|p−1 +1
)

,

and
∣

∣

∣

∣

G,4(Ξ)
1

α0
1/3ρ1/3

∣

∣

∣

∣

6
k1/3

l
1/3
k

∣

∣

∣g′(γ/ρ2/3)
∣

∣

∣6C
(

|γ/ρ2/3|q−1 +1
)

.

As the right hand sides of the inequalities above are integrable on (1/k,1) we have a∈
L1(1/k,1) and this, in turn, implies bµ′∈L1(1/k,1). Now, we set z(ρ)=

∫ ρ

1
a(s)ds for

ρ∈ (1/k,1). Then z is absolutely continuous and so is µz. As (µz)|ρ=1/k =(µz)|ρ=1 =0
we get

0=

∫ 1

1/k

(µz)′dρ=

∫ 1

1/k

(

µ′

∫ ρ

1

a(s)ds+µa

)

dρ.

Then (6.27) becomes

∫

Sk

(

−
∫ ρ

1

a(s)ds+b

)

f dρ=0. (6.28)
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By the properties of f we obtain that for some constant ck

b−
∫ ρ

1

a(s)ds= ck a.e. ρ∈Sk.

As k was arbitrary, the above equality is valid for all k∈N. In this case Sk ⊂Sk+1

implies that ck = ck+1. As
⋃

kSk ={ρ∈ (0,1) : 0<α′<∞} and m((0,1)\⋃kSk)=0,
we conclude

b−
∫ ρ

1

a(s)ds=const. a.e.ρ∈ (0,1). (6.29)

Now, let us fix δ∈ (0,1). By the above argument a∈L1(δ,1) and (6.29) implies
b∈W 1,1(δ,1) with the weak derivative b′ =a. Moreover, by (6.7) we have α0

2/3∈
W 1,1(δ,1) and hence bα0

2/3∈W 1,1(δ,1). At this point, we compute

DΩ(Γ0)=











1 0 0 0 α0
1/3 α0

1/3 α0
2/3

0 3
(

α0

ρ

)2/3

0 α0
1/3 0

α′

0
ρ

α0
2/3

α′

0
ρ

α0
1/3

0 0 3
(

α0

ρ

)2/3

α0
1/3 α′

0
ρ

α0
2/3 0

α′

0
ρ

α0
1/3











and notice that definitions (6.25) and (6.26) of a and b imply

bα0
2/3 =3ρ2/3G,i(Ξ)Ωi

,1(Γ
0)=3ρ2/3G1(ρ),

while its weak derivative is expressed as

d

dρ
bα0

2/3 =aα0
2/3 +b

2α′
0

3α0
1/3

=ρ−1/3G,i(Ξ)
(

Ωi
,2(Γ

0)+Ωi
,3(Γ

0)
)

+
v−v0
h

=ρ−1/3G2(ρ)+
v−v0
h

.

We conclude that, for δ∈ (0,1),

ρ2/3G1(ρ)∈W 1,1(δ,1), ρ−1/3G2(ρ)∈L1(δ,1), (6.30)

and for almost every ρ∈ (0,1)

3ρ2/3G1(ρ)=

∫ ρ

1

(

s−1/3G2(s)+
v(s)−v0(s)

h

)

ds+const. (6.31)

Finally, to prove (6.5), we compute

(α−α0)
′
=h
(

3α0
2/3v

)′

=h

(

2α′
0

α0
1/3

v+3α0
2/3v′

)

=(α−α0)
2α′

0

3α0
+(β−β0)α0

2/3,

and hence

α′ =
α′

0

3

(

1+
2α

α0

)

+(β−β0)α0
2/3. (6.32)
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Similarly,

(γ−γ0)
′
=h
(

2α0
1/3v

)′

=
2

3

(

α−α0

α0
1/3

)′

=
2

3α0
1/3

(

α′− α′
0

3

(

2+
α

α0

))

and hence

α′ =
α′

0

3

(

2+
α

α0

)

+
3

2
(γ′−γ0

′)α0
1/3. (6.33)

Now, take δ∈ (0,1). Then from (6.32) and (6.33) it follows that for all ρ∈ (δ,1)

|α′|6 |α′
0|

3

(

1+
2λ

α0(δ)

)

+ |β−β0|λ2/3 (6.34)

and

|α′|6 |α′
0|

3

(

2+
λ

α0(δ)

)

+
3

2
|γ′−γ0

′|λ1/3. (6.35)

Since δ is arbitrary and β−β0∈L3p(δ,1), γ′−γ′0∈Lq(δ,1), the assumption (6.1) and
last two inequalities imply that for each δ∈ (0,1)

α′∈L3p(δ,1)
⋂

Lq(δ,1). (6.36)

This completes the proof.

7. Regularity
First, we claim that for each representative of the minimizer (α,β,γ,v)∈Aλ in

the theorem (6.1) we can alter α′ on a set of measure zero such that functions G1 and
G2 defined in (6.2) and (6.3) satisfy

3ρ2/3G1(ρ)=

∫ ρ

1

s−1/3G2(s)+
v(s)−v0(s)

h
ds+C0, for all ρ∈ (0,1].

Indeed, let us fix representatives (α,β,γ,v) and (α0,β0,γ0,v0). Define

z(ρ)=
1

3ρ2/3

∫ ρ

1

s−1/3G2(s)+
v(s)−v0(s)

h
ds+C0 (7.1)

and let A={ρ∈ (0,1] :G1(ρ) 6=z(ρ)}. Take any ρ0∈A and define

y0 =
(

z(ρ)−ϕ′(βρ2/3)−2g′(3γ′ρ1/3)(α0/ρ)
1/3
)∣

∣

∣

ρ=ρ0

.

Then by (A1) and (A2) it follows that there exists a unique x0 such that h′(x0)=

y0 (ρ0/α0(ρ0))
2/3

. Now, by definition of G1 we have for all ρ∈ (0,1]

G1(ρ)=ϕ′(βρ2/3)+2g′(3γ′ρ1/3/2)(α0/ρ)
1/3 +h′(α′)(α0/ρ)

2/3. (7.2)

Thus assigning α′(ρ0)=x0 we get G1(ρ0)=z(ρ0). In the end, after altering this way
α′ on the set A, we get that G1(ρ)=z(ρ) for all ρ∈ (0,1]. Moreover by (6.4) we have
mA=0 and this finishes the proof.
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The following regularity lemma requires a smoother initial iterate than before. In
particular we prove:

Lemma 7.1 (Regularity). Let (α,β,γ,v)∈Aλ be the minimizer of I over Aλ.
Assume that the initial iterate (α0,β0,γ0,v0) satisfies (5.7),

α0,γ0∈C1(0,1] and β0∈C(0,1]. (7.3)

Then

α,γ,v∈C1(0,1] and β∈C(0,1]. (7.4)

Proof. Clearly, we can pick a representative (α,β,γ,v) such that α,γ,v∈C(0,1].
Proceeding as in (6.32) and (6.33), the constraints α−α0

h =3α0
2/3v, γ−γ0

h =2α0
1/3v,

and β−β0

h =3v′ imply for a.e. ρ∈ (0,1)

βρ2/3 =α′(ρ/α0)
2/3 +f1(ρ) (7.5)

and

3

2
γ′ρ1/3 =α′(ρ/α0)

1/3 +f2(ρ), (7.6)

where

f1(ρ)=β0ρ
2/3− α′

0ρ
2/3

3α0
2/3

(

1+
2α

α0

)

,

f2(ρ)=
3

2
γ′0ρ

1/3− ρ1/3

α
1/3
0

(

2+
α

α0

)

.

We note that (7.3) implies that f1 and f2 are continuous on (0,1] functions.

First, we alter β and γ′ so that equality in (7.5) and (7.6) holds for all ρ∈ (0,1).
Hence by (7.2) we have for all ρ∈ (0,1]

G1(ρ)=ϕ′
(

α′(ρ/α0)
2/3 +f2(ρ)

)

+2g′
(

α′(ρ/α0)
1/3 +f1(ρ)

)

(α0/ρ)
1/3

+h′(α′)(α0/ρ)
2/3.

(7.7)

and this suggests to define f :R+×(0,1]→R by

f(x,ρ)=ϕ′
(

x(ρ/α0)
2/3 +f2(ρ)

)

+2g′
(

x(ρ/α0)
1/3 +f1(ρ)

)

(α0/ρ)
1/3

+h′(x)(α0/ρ)
2/3.

(7.8)

Now, define A={ρ∈ (0,1] :G1(ρ) 6=z(ρ)}. Clearly, mA=0 and note that from (7.7)
it follows that

G1(ρ)=f(α′,ρ)=z(ρ), ρ /∈A. (7.9)
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Take ρ0∈A. Then, as ρ0>0 and α0(ρ0)>0, properties (A1)-(A3) imply that
fx(x,ρ0)>0 for all x∈R+; moreover, limx→0+f(x,ρ0)=−∞ and limx→+∞f(x,ρ0)=
+∞. Hence there exists a unique x0∈R+ such that f(x0,ρ0)=z(ρ0).

At this point we are ready to assign new values for α′,β, and γ′. Define

α′(ρ0)=x0, β(ρ0)=
x0

α0(ρ0)
2/3

+
f1(ρ0)

ρ
2/3
0

,

and

γ′(ρ0)=
2

3

(

x0

α0(ρ0)
1/3

+
f2(ρ0)

ρ
1/3
0

)

.

This implies that (7.5) and (7.6) hold at ρ=ρ0, and hence by (7.2)

G1(ρ0)=f(x0,ρ0)=f(α′(ρ0),ρ0)=z(ρ0). (7.10)

As ρ0∈A was arbitrary (7.9) and (7.10) imply

G1(ρ)=f(α′,ρ)=z(ρ), ρ∈ (0,1]. (7.11)

Hence G1 is continuous on (0,1] and therefore α′>0 for all ρ∈ (0,1].

Now, let us assume ρk →ρ0 and α′(ρk)→ l∈ [0,∞] with ρk,ρ0∈ (0,1], k∈N. First,
we claim that l∈ (0,∞). Indeed, assume that l=0 or l=+∞. Then by continuity of α0

we have α0(ρk)→α0(ρ0)>0 and hence properties (A1)-(A3), together with continuity
of f1 and f2, imply limk→∞f(α′(ρk),ρk)=∓∞ respectively. Thus by continuity of
G1 and (7.11) we have

G1(ρ0)= lim
k→∞

G1(ρk)= lim
k→∞

f(α′(ρk),ρk)=∓∞, (7.12)

which is a contradiction. Therefore we assume l∈ (0,∞). As f1, f2 are continuous on
(0,1], we must have limk→∞f(α′(ρk),ρk)=f(l,ρ0), and therefore by (7.11) we get

f(α′(ρ0),ρ0)=G1(ρ0)= lim
k→∞

G1(ρk)

= lim
k→∞

f(α′(ρk),ρk)=f(l,ρ0).
(7.13)

By the strict monotonicity of f(·,ρ0) we get α0(ρ0)= l and conclude that α′ is con-
tinuous on (0,1].

Finally, from the discussion above it follows that equalities (7.5) and (7.6) hold
for all ρ∈ (0,1]. The continuity of f1,f2, and α′ imply β,γ′∈C(0,1]. Moreover, as
α−α0

h =3α0
2/3v for all ρ∈ (0,1], we obtain v∈C1(0,1]. This finishes the proof.
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