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Motivation

• Contemporary predictive ML models are complex: 

o Neural Networks (NN)
o Gradient Boosting Machines (GBM)
o Semi-supervised methods

• Interpretability is crucial for business adoption, model documentation, regulatory oversight, and human 
acceptance and trust:

o Banking
o Insurance
o Healthcare

• Accuracy may come at the expense of interpretability [P. Hall, 2018]:

o Linear models are easy to interpret, 𝑌 = 𝑎 𝑋 + ⋯ 𝑎 𝑋
o Nonlinear models (GBM, NN) are difficult to interpret.



Motivation

Regulatory requirements

• ML models, and strategies that rely on ML models, are subject to laws and regulations (e.g. ECOA, EEOA).

• Financial institutions in the United States (US) are required under the ECOA to notify declined or negatively 
impacted applicants of the main factors that led to the adverse action.

• Determining the factor contributing the most to an outcome of a model may be done via individualized 
feature attributions.

Common approaches:

o Self-interpretable models

o Post-hoc model explanations



Image classification [from Ribeiro et al. “Why should I trust you?”]



Individualized explanations

Setup

• (Ω, ℱ, ℙ) common probability space

• Distribution: random pair 𝑋, 𝑌 , where 𝑋 = (𝑋 , … , 𝑋 ) ∈ ℝ are features, 𝑌 ∈ ℝ is response variable.

• 𝑃 a pushforward probability measure, 𝑃 𝐴 = ℙ(𝑋 ∈ 𝐴), ℬ(ℝ ) .

• ML model: 𝑓 𝑥 = 𝔼 𝑌 𝑋 = 𝑥 .

Definition

A model explainer quantifies the contribution of an observation 𝑥 = 𝑥 , 𝑥 , … 𝑥 ∼ 𝑋 to the value 𝑓(𝑥). 

Formally, it can be viewed as a map

 ℝ ∋ 𝑥 → 𝐸 𝑥; 𝑓, 𝑋, ℐ = 𝐸 , 𝐸 , … 𝐸 ∈ ℝ

where the random vector 𝑋 and model implementation ℐ serve as parameters.

Example

Linear model: 𝑓 𝑥 = 𝑎 𝑥 + 𝑎 𝑥 … + 𝑎 𝑥 .  Set  𝐸 𝑥; 𝑓, 𝑋 = 𝑎 𝑥 − 𝔼 𝑋 , 𝑖 ∈ 𝑁 = {1,2, … 𝑛}.



Games and game values

A cooperative game (𝑁, 𝑣)

• Set of players 𝑁 = 1,2, … , 𝑛  

• Utility 𝑣

o 𝑣 ∅ = 0

o 𝑣(𝑁) is payoff of the game

o 𝑣(𝑆) is the worth of the coalition 𝑆 ⊆ 𝑁

Game value

A map 𝑁, 𝑣 → ℎ 𝑁, 𝑣 = ℎ 𝑁, 𝑣 ∈ ℝ

• (LN)  ℎ is linear if ℎ 𝑁, 𝑣 + 𝑤 = ℎ 𝑁, 𝑣 + ℎ 𝑁, 𝑤 .

• (EF)   ℎ is efficient if ∑ ℎ 𝑁, 𝑣 = 𝑣(𝑁) .

• (SM)  ℎ is symmetric if it is invariant with respect to player permutations.

• (NP): null-player property: if 𝑖 ∈ 𝑁 is null player (i.e. 𝑣 𝑆 ∪ 𝑖 = 𝑣 𝑆 , ∀𝑆)  ⇒   ℎ 𝑁, 𝑣 = 0.



Linear game value

Shapley value [Shapley, 1953]

𝜑 𝑣 = ∑
! !

!
𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆⊆ ∖

• 𝜑 is linear, efficient, symmetric, null-player property.

• 𝜑 is the unique game value that satisfies (LN), (EF), (SM), [Shapley, 1953].

Generic linear, symmetric game value in the marginalist form with (NP)

ℎ 𝑁, 𝑣 = ∑ 𝑤 𝑆, 𝑛 ⋅ 𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆  ⊆ ∖

ℎ satisfies (NP).

remark: The Shapley value assumes that every player is equally likely to join any coalition of the same size and that all coalitions of a given size are equally likely.



Individualized explanations with deterministic games for ML models

Definition (marginal and conditional games)

Given (𝑥, 𝑋, 𝑓) and 𝑆 ⊂ 𝑁 = {1,2, … 𝑛}

• 𝑣∗ 𝑆, 𝑥; 𝑋, 𝑓 =  𝔼[𝑓(𝑋 , 𝑋 )|𝑋 = 𝑥 ],  conditional game

• 𝑣∗ 𝑆, 𝑥; 𝑋, 𝑓 = 𝔼 𝑓 𝑥 , 𝑋 , marginal game

Definition (marginal and conditional explanations)

Given a game value ℎ[𝑁, 𝑣] individualized conditional and marginal explanations are defined:

• 𝑥 → ℎ∗ 𝑥 = ℎ 𝑁, 𝑣∗ (⋅, 𝑥) ∈ ℝ ,   𝑥 → ℎ∗ 𝑥 = ℎ 𝑁, 𝑣∗ (⋅, 𝑥) ∈ ℝ

Game theoretic approach for ML explainability has been explored 
in Štrumbelj & Kononenko (2014), Lundberg & Lee (2017)



ML Games

Conditional game 

• 𝑣∗ explores the contribution of 𝑥 ∼ 𝑋 in the context of the observational 

graph  Ω ∋ 𝜔 → 𝑋 𝜔 , 𝑓 𝑋 𝜔 .

• ℎ[𝑁, 𝑣∗ ] are “consistent” with the data and 𝑓 𝑋

Informally …

Marginal game

• 𝑣∗ explores the input-output relationship 𝑥, 𝑓 𝑥 , 𝑥 ∼ 𝑋.

• ℎ[𝑁, 𝑣∗ ] are “consistent” with the model 𝑓(𝑥)

𝑌 = 𝑓 𝑋 = 𝑋 𝑋 |  𝑋 = sin 𝜋𝑋 + 𝜖

Marginal vs conditional



ML GamesRandom games

Random games

• 𝑣 𝑆; 𝑋, 𝑓 = 𝑣∗ 𝑆, 𝑥; 𝑋, 𝑓 | ∈ (Ω, ℱ, ℙ)

• 𝑣 𝑆; 𝑋, 𝑓 = 𝑣∗ 𝑆, 𝑥; 𝑋, 𝑓 | ∈ (Ω, ℱ, ℙ)

Linearity

For 𝑣 ∈ 𝑣 , 𝑣 and two models 𝑓, 𝑔

• 𝑣 𝑆; 𝑋, 𝛼 ⋅ 𝑓 + 𝑔 → 𝛼 ⋅ 𝑣 𝑆; 𝑋, 𝑓 + 𝑣 𝑆; 𝑋, 𝑔 , 𝑆 ⊆ 𝑁

• ℎ 𝑁, 𝑣  ⋅ ; 𝑋, 𝛼 ⋅ 𝑓 + 𝑔 → 𝛼 ⋅ ℎ [𝑁, 𝑣( ⋅ ; 𝑋, 𝑓)]+ ℎ [𝑁, 𝑣( ⋅ ; 𝑋, 𝑔)]



Conditional
Conditional operator

Let 𝑋 = 𝑋 , . . 𝑋 be a random vector, ℎ[𝑁, 𝑣] be a linear game value.

For 𝑖 ∈ 𝑁 define a map

ℰ̅ : 𝐿 ℝ , 𝑃 ↦ 𝐿 Ω, ℙ by  ℰ̅ 𝑓 ≔ ℎ 𝑁, 𝑣 ⋅; 𝑋, 𝑓 = ℎ (𝑋).

Theorem [AM, Kotsiopoulos, Filom, Ravi Kannan 2022]

• ℰ̅ , 𝐿 𝑃 is a well-defined bounded linear operator such that

ℰ̅ 𝑓 − ℰ̅ 𝑓
(ℙ)

≤ 𝐶 ℎ 𝑓 − 𝑓 = 𝐶 ℎ 𝔼 (𝑓 𝑋 − 𝑓 𝑋

• If 𝑌 = 𝑓 𝑋 + 𝜖, then

ℎ 𝑁, 𝔼[𝑌|𝑋 ] = ℰ̅ 𝑓 + 𝑂 𝜖 in 𝐿 ℙ (data consistency)

Consequences
• 𝑓 𝑋 ≈ 𝑓 𝑋 in 𝐿 ℙ ⇒ ℎ 𝑣 𝑓 ≈ ℎ 𝑣 𝑓 in 𝐿 (ℙ).
• Functional representation of 𝑓 plays no role for explanations, that is, the Rashomon effect does not take place.



Conditional
Motivational example for marginal explanations “instabilities” in 𝐿 𝑃 -norm

Synthetic model

Question: What is a natural domain 
for marginal explanations to be a well-defined 
Operator?



Marginal operator

Marginal Operator

• 𝑃 = ∑ 𝑃 ⊗ 𝑃⊆

• ℰ̅ : 𝐿 𝑃 → 𝐿 ℙ defined by

ℰ̅ 𝑓; ℎ, 𝑋 : = ℎ 𝑣 (⋅ ; 𝑋, 𝑓)

Theorem [AM, Kotsiopoulos, Filom, Ravi Kannan 2022]

• ℰ̅ : 𝐿 𝑃 → 𝐿 (ℙ) is well-defined 

• ℰ̅ 𝑓 − ℰ̅ 𝑓
(ℙ)

≤ 𝐶 (ℎ) 𝑓 − 𝑓

• ℰ̅ , 𝐿 𝑃 is bounded and hence continuous

Note: 𝐿 (𝑃 ) in general cannot be embedded in 𝐿 (𝑃 ).



Conditional

Central questions regarding the marginal operator

• Can the marginal operator be well-defined on a space equipped with 𝐿 (𝑃 )-norm?

• If yes, when is it bounded and when unbounded?

To answer these questions it is necessary to consider the two cases:

1. 𝑃 ≪ 𝑃 i.e.  𝑃 is absolutely continuous w.r.t. 𝑃

2. 𝑃 is not absolutely continuous w.r.t. 𝑃



Conditional

Independent features

If 𝑃 =⊗ 𝑃  , that is,  𝑋 = (𝑋 , … , 𝑋 ) are independent, then

• 𝑃 = 𝑃  

• 𝑣 = 𝑣

⇒ ℎ 𝑁, 𝑣 = ℎ 𝑁, 𝑣 ⇒ marginal operator is bounded (continuous) in 𝐿 𝑃 .

Dependent features

If features are dependent then

• 𝑃 ≠ 𝑃 with 𝑃 ≪ 𝑃

⇒ Marginal explanations will depend on the representation of 𝑓(𝑥). 



Marginal operator instability

Lemma [AM, Kotsiopoulos, Filom, Ravi Kannan (2022)]

Suppose 𝑃 is not absolutely continuous w.r.t. 𝑃 . 

• The identity map 𝐼: 𝐿 𝑃 → 𝐿 𝑃 is not one-to-one.

• The identity map 𝐼:  𝐿 𝑃 /𝐻 → 𝐿 (𝑃 ) is one-to-one.

Then 𝐻 = 𝐿 𝑃 /𝐻 , ‖ ⋅ ‖ ( ) we have

𝑓 ∈ 𝐻 → 𝑣 𝑆; 𝑋, 𝑓 ⊆ ∈ 𝐿 ℙ is an ill-posed operator.

Proof: ∃𝑅 ∈ ℬ(ℝ ) s.t. 1 = 0 but 𝑣 𝑆; 𝑋, 1 ≠ 𝑣 𝑆; 𝑋, 0 for some 𝑆 ⊆ 𝑁.



Marginal operator instability

Lemma II [AM, Kotsiopoulos, Filom, Ravi Kannan (2022)]

Suppose 𝑃 ≪ 𝑃

• The identity map 𝐼: 𝐿 𝑃 → 𝐿 𝑃 is one-to-one.

• 𝐻 = 𝐿 𝑃 , ‖ ⋅ ‖ ( ) is well-defined.

• 𝑓 ∈ 𝐻 → 𝑣 𝑆; 𝑋, 𝑓 ⊆ ∈ 𝐿 ℙ is a well-defined operator.

• 𝑓 ∈ 𝐻 → ℎ 𝑁, 𝑣 ⋅; 𝑋, 𝑓 , ∈ 𝐿 ℙ , 𝑖 ∈ 𝑁 is a well-defined operator.



Marginal operator instability

Question: Is there any relationship between boundedness and dependencies?

• If 𝑃 ≪ 𝑃 then 𝑟 ≔
 

 
∈ 𝐿 (𝑃 ) controls the amount of dependencies in the sense of:

(Wasserstein distance)    𝑊 𝑃 , 𝑃 ≤ ∫ 𝑥 ⋅ 𝑟 𝑥 − 1  𝑃 𝑑𝑥

It turns out the Radon-Nikodym derivative can shed light on the boundedness/continuity

Theorem [AM, Kotsiopoulos, Filom, Ravi Kannan (2023,revised)]

If 𝑃 ≪ 𝑃 and 𝑟 ∈ 𝐿 (𝑃 ). Then

ℰ̅ , 𝐻 is a well-defined bounded linear operator satisfying

ℰ̅ 𝑓
(ℙ)

≤ 𝑟 ⋅ 𝐶 ℎ ⋅ 𝑓

Proof: By definition of RN derivative and 𝑣 .



Marginal operator instability

Theorem (unbounded case) [AM, Kotsiopoulos, Filom, Ravi Kannan (2023, revised)]

•

•



Explanations under dependencies

• In applications where it is crucial to understand the true scientific reason behind observed data 𝑣 might be preferable

• In other applications, where the model is required to be explained, the game 𝑣 should be used

Grouping features as a stabilization mechanism

1. The choice between the two games is application specific

2. Complexity and stability

• Marginal explanations are consistent with the model; unstable with respect to model perturbation in 𝐿 (𝑃 ). Expensive.

• Computing conditional explanations is infeasible; stable with respect to model perturbation in 𝐿 (𝑃 ).

1 & 2 motivate us to design methods that employ grouping by dependencies

• Unify two types of explanations (to achieve stability of marginal explanations)

• Reduce complexity of computations

• Explanations are split under dependencies (grouping allows to compute an “explanation of information”)



Quotient game explainers

Quotient game explainers

Given 𝒫 = {𝑆 , 𝑆 , … 𝑆 }, treat each group predictor 𝑋 as a player 𝑗 ∈ {1,2, … , 𝑚}

Quotient game: 𝑣𝒫 𝐴 = 𝑣 ⋃ ∈ 𝑆 , 𝐴 ⊂ 𝑀 = 1,2, … 𝑚

Quotient game explainers: f ↦ ℎ 𝑀, 𝑣𝒫(𝑓) , 𝑣 ∈ {𝑣 , 𝑣 }

Proposition [AM, Kotsiopoulos, Filom, Ravi Kannan (2022)] 

• if groups {𝑋 , 𝑋 , … , 𝑋 } are independent, ℎ[𝑣] is linear,

ℎ 𝑀, 𝑣 ,𝒫(𝑓) = ℎ 𝑀, 𝑣 ,𝒫(𝑓) and hence continuous.

• Let 𝑄 =∪ ∈ 𝑆 .  If 𝑟 =
⊗

is bounded for 𝐴 ⊆ 𝑀, then

𝐻 ∋ 𝑓 → ℎ 𝑀, 𝑣 ,𝒫(𝑓) is bounded.



Grouping

Variable hierarchical clustering

Inputs
• features 𝑋 , 𝑋 , … , 𝑋
• variable dissimilarity 𝑑 (𝑋 , 𝑋 )

• intergroup dissimilarity d (𝑆 , 𝑆 )

• energy functional for minimization 𝑊

Output
• dendrogram 
• height of each node reflects the level of dissimilarity



Grouping

Clustering based on MIC

1. Mutual information [Shannon 1948]

• Measure of the mutual dependence between two variables:

𝐼 𝑋, 𝑌 = 𝐷 𝑃( , )|𝑃 ⊗ 𝑃 ∈ [0, ∞]

2. Maximal Information coefficient, 𝑀𝐼𝐶∗ [Reshef et al, 2011, 2016 ]

• 𝑀𝐼𝐶∗(𝑋, 𝑌)= Regularized mutual information ∈ [0,1]

• Equitable: 𝑀𝐼𝐶∗(𝑋, 𝑌) = 𝑀𝐼𝐶∗ 𝑔 𝑋 , 𝑔 𝑌

• Transitive: 𝑀𝐼𝐶∗ 𝑋, 𝑌 ≈  𝑀𝐼𝐶∗ 𝑍, 𝑊  ⇒  𝑀𝐼𝐶∗ 𝑋 + 𝜖  , 𝑌 + 𝜖 ≈  𝑀𝐼𝐶∗(𝑍 + 𝜖 , 𝑊 + 𝜖 )

• Fast algorithm 𝑂(#𝑠𝑎𝑚𝑝𝑙𝑒𝑠)

3. For variable clustering 𝑑 𝑋 , 𝑋 = 1 − 𝑀𝐼𝐶∗(𝑋 , 𝑋 ). Group dissimilarity information theoretic.
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