Stability theory of game-theoretic group feature explanations for machine learning models

Alexey Miroshnikov

joint work with Konstantinous Kotsiopoulos, Khashayar Filom, Arjun Ravi Kannan

Emerging Capabilities & Data Science Research Group, Discover Financial Services

SIAM Conference on Mathematics of Data Science, October 21, 2024 Mathematics of Explainable AI with Applications to Finance and Medicine

Disclaimer: This presentation represents the views of the authors and does not indicate concurrence by Discover Financial Services. 1

Motivation

Introduction

• Contemporary predictive ML models are complex:

Neural Networks (NN), Gradient Boosting Machines (GBM), Semi-supervised methods

• Interpretability is crucial for business adoption, regulatory oversight, and human acceptance and trust:

Banking, Insurance, Healthcare

• Accuracy may come at the expense of interpretability [P. Hall, 2018].

Regulatory requirements

- ML models, and strategies that rely on ML models, are subject to laws and regulations (e.g. ECOA, EEOA).
- Financial institutions in the United States (US) are required under the ECOA to notify declined or negatively impacted applicants of the main factors that led to the adverse action.
- Common approaches: Post-hoc individualize model explanations, Self-interpretable models.

Individualized explanations

Notation

- $x \to f(x)$ ML model (classification score or regressor)
- **•** (*R, Y*) ML model (classification score or regressor)

 (X, Y) , where $X = (X_1, ..., X_n)$ are features, $Y \in \mathbb{R}$ is response variable on the probability space (Ω, \mathcal{F}, \mathbb{P}).

 P_X a pushforward probability mea **Notation**
 \bullet $x \to f(x)$ ML model (classification score or regressor)
 \bullet (X, Y) , where $X = (X_1, ..., X_n)$ are features, $Y \in \mathbb{R}$ is response variable on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
 \bullet P_X a pushforward
- P_X a pushforward probability measure, $P_X(A) = \mathbb{P}(X \in A)$, $\mathcal{B}(\mathbb{R}^n)$.

Definition

$$
\mathbb{R}^n \ni x \to E(x; f, X, \mathcal{I}_f) = (E_1, E_2, \dots E_n) \in \mathbb{R}^n
$$

where the model f, the random vector X and model implementation \mathcal{I}_f serve as parameters.

Games and game values

Objective: Study explanations based on game values for the marginal and conditional games. Games and game values

ctive: Study explanations based on game values for the marginal and cooperative game (N, v) .
 \circ $N = \{1,2,...,n\}$, set of players.
 \circ v is utility. $v(S)$ is the worth of the coalition $S \subseteq N$.
 Games and game values
 Objective: Study explanations based on game values for the marginal and conditional g

• Cooperative game (N, v) .
 $\circ N = \{1, 2, ..., n\}$, set of players.
 $\circ v$ is utility. $v(S)$ is the worth of the c the marginal and conditional games.
 N .
 $\in \mathbb{R}^n$.

m
 $S, n \cdot (n(S \cup i) - n(S))$

- Cooperative game (N, v) .
	-
	- \circ *v* is utility. $v(S)$ is the worth of the coalition $S \subseteq N$.
- Game value. A map $(N, v) \rightarrow h[N, v] = \{h_i[N, v]\}_{i=1}^n \in \mathbb{R}^n$. .

Assumption: We study game values in the marginalist form

$$
h_i[N, v] = \sum_{S \subseteq N \setminus \{i\}} w(S, n) \cdot \big(v(S \cup i) - v(S) \big)
$$

 h is linear (LN), symmetric (SM).

Example: Shapley value [Shapley, 1953]

 $\varphi_i[v] = \sum_{S \subseteq N \setminus \{i\}} \frac{s!(n-s-1)!}{n!} \big(\nu(S \cup i) - \nu(S) \big)$ which is linear, symmetric, efficient (EF) $\sum_i \varphi_i[N, \nu] = \nu(N)$. .

Other examples: Banzhaf value (1965), Owen value (1976).

Individualized explanations with deterministic games for ML models

Individualized explanations with deterministic games fo

Game theoretic approach for ML explainability has been explored in Štrumbelj & Konone

Definition

Given (x, X, f) and $S \subset N = \{1, 2, ..., n\}$

• $v_*^{CE}(S, x; X, f) = \mathbb{E}[f(X_S$ • ∗ா , ; , = [(ௌ, ିௌ)|ௌ ⁼ ௦ Game theoretic approach for ML explainability has been explored in Štrumbelj & Kononenko (2014), Lundberg & Lee (2017)

Definition

- $v_*^{CE}(S, x; X, f) = \mathbb{E}[f(X_S, X_{-S})|X_S = x_S]$, conditional game
- $v_*^{ME}(S, x; X, f) = \mathbb{E}[f(x_S, X_{-S})]$, marginal game

Definition

Given a game value $h[N, v]$ individualized conditional and marginal explanations are defined:

Definition

• $v_*^{CE}(S, x; X, f) = \mathbb{E}[f(X_S, X_{-S})|X_S = x_s]$, conditional game

• $v_*^{ME}(S, x; X, f) = \mathbb{E}[f(x_S, X_{-S})]$, marginal game
 Definition

Given a game value $h[N, v]$ individualized conditional and marginal explanations ar $= x_s$], conditional game
rginal game
do conditional and marginal explanations are defined:
 $x \rightarrow h_*^{ME}(x) = h[N, v_*^{ME}(\cdot, x)] \in \mathbb{R}^n$

Marginal vs conditional (informally)

Marginal game

-
-

Conditional game

Random games and operators

In our analysis we study game values of random games.

Random games

- $v^{CE}(S; X, f) = v^{CE}_*(S, x; X, f)|_{x=X} \in (\Omega, \mathcal{F}, \mathbb{P})$
- dom games and operators

udy game values of random games.
 $\begin{aligned} \n\zeta^{\mathit{CE}}_k(\mathit{S},x; X,f)|_{x=X} &\in (\Omega, \mathcal{F}, \mathbb{P}) \n\end{aligned}$ • $v^{ME}(S; X, f) = v_*^{ME}(S, x; X, f)|_{x=X} \in (\Omega, \mathcal{F}, \mathbb{P})$ dom games and operators

udy game values of random games.
 $\begin{aligned} \n\mathcal{F}^E(S,x;X,f)|_{x=X} &\in (\Omega,\mathcal{F},\mathbb{P}) \\\\ \n^{\text{ME}}_{*}(S,x;X,f)|_{x=X} &\in (\Omega,\mathcal{F},\mathbb{P}) \\\\ \n\textbf{h}[N,v] \end{aligned}$

Operators based on $h[N, v]$

- $\bar{\mathcal{E}}^{CE}[f] = (\bar{\mathcal{E}}_1^{CE}, ..., \bar{\mathcal{E}}_n^{CE})[f] : L^2(\mathbb{R}^n, P_X) \mapsto L^2(\Omega, \mathbb{P})^n$ by $\bar{\mathcal{E}}_i^{CE}[f] \coloneqq h_i[N, v^C]$
- re study game values of random games.
 $= v_*^{CE}(S, x; X, f)|_{x=X} \in (\Omega, \mathcal{F}, \mathbb{P})$
 $= v_*^{ME}(S, x; X, f)|_{x=X} \in (\Omega, \mathcal{F}, \mathbb{P})$
 1 on $h[N, v]$
 $\begin{aligned}\n\frac{CE}{1}, \dots, \bar{E}_n^{CE}\big[f]: L^2(\mathbb{R}^n, P_X) &\mapsto L^2(\Omega, \mathbb{P})^n \text{ by } \bar{\mathcal{E}}_i^{CE}[f]: \\
\frac{SM}{$ f random games.
 $\in (\Omega, \mathcal{F}, \mathbb{P})$
 $\in (\Omega, \mathcal{F}, \mathbb{P})$
 $, P_X) \mapsto L^2(\Omega, \mathbb{P})^n$ by $\bar{\mathcal{E}}_i^{CE}[f] := h_i[N, v^{CE}(\cdot; X, f)]$
 $\infty^n, \tilde{P}_X) \mapsto L^2(\Omega, \mathbb{P})^n$ by $\bar{\mathcal{E}}_i^{ME}[f] := h_i[N, v^{ME}(\cdot; X, f)]$ ${}_{i}^{CE}[f] := h_i[N, v^{CE}(\cdot; X, f)]$
 $\bar{\mathcal{E}}_{i}^{ME}[f] := h_i[N, v^{ME}(\cdot; X, f)]$ • $\bar{\mathcal{E}}^{ME}[f] = (\bar{\mathcal{E}}_1^{ME}, ..., \bar{\mathcal{E}}_n^{ME})[f]: L^2(\mathbb{R}^n, \tilde{P}_X) \mapsto L^2(\Omega, \mathbb{P})^n$ by $\bar{\mathcal{E}}_i^{ME}[f] \coloneqq h_i[N, v^1]$ = $v_*^{CE}(S, x; X, f)|_{x=X} \in (\Omega, \mathcal{F}, \mathbb{P})$

= $v_*^{ME}(S, x; X, f)|_{x=X} \in (\Omega, \mathcal{F}, \mathbb{P})$

on $h[N, v]$
 $\mathcal{E}_t^E, ..., \mathcal{E}_n^{CE}\big[f]: L^2(\mathbb{R}^n, P_X) \mapsto L^2(\Omega, \mathbb{P})^n$ by $\bar{\mathcal{E}}_t^{CE}[f] :=$
 $\lim_{n \to \infty} E_n^M = \int [f]: L^2(\mathbb{R}^n, \tilde{P}_X) \mapsto L^2$ $(\Omega, \mathcal{F}, \mathbb{P})$
 $\equiv (\Omega, \mathcal{F}, \mathbb{P})$
 P_X) $\mapsto L^2(\Omega, \mathbb{P})^n$ by $\bar{\mathcal{E}}_i^{CE}[f] := h_i[N, v^{CE}(\cdot; X, f)]$
 $\bar{\mathcal{P}}_X$) $\mapsto L^2(\Omega, \mathbb{P})^n$ by $\bar{\mathcal{E}}_i^{ME}[f] := h_i[N, v^{ME}(\cdot; X, f)]$ $E[f] := h_i[N, v^{CE}(:, X, f)]$
 $E_{i}^{ME}[f] := h_i[N, v^{ME}(:, X, f)]$

where $\tilde{P}_X = \frac{1}{2^n} \sum_{S \subseteq N} P_{X_S} \otimes P_{X_{-S}}.$

Note: $\tilde{P}_X = P_X$ if features are independent.

Continuity I

Theorem [AM, Kotsiopoulos, Filom, Ravi Kannan (2022)]

• $\left(\bar{\mathcal{E}}^{CE}$, $L^2(P_X)\right)$ is a well-defined bounded linear operator such that oulos, Filom, Ravi Kannan (2022)]

vell-defined bounded linear operator such that
 $\bar{\mathcal{E}}^{CE}[f_1] - \bar{\mathcal{E}}^{CE}[f_2] \|_{L^2(\mathbb{P})} \leq C(w,n) \cdot \|f_1 - f_2\|_{L^2(P_X)}$
 $(w, n) = 1.$

$$
\|\bar{\mathcal{E}}^{CE}[f_1] - \bar{\mathcal{E}}^{CE}[f_2]\|_{L^2(\mathbb{P})} \le C(w, n) \cdot \|f_1 - f_2\|_{L^2(P_X)}
$$

Continuity I

I Theorem [AM, Kotsiopoulos, Filom, Ravi Kannan (2022)]

• $(\bar{\mathcal{E}}^{CE}, L^2(P_X))$ is a well-defined bounded linear operator such that
 $\|\bar{\mathcal{E}}^{CE}[f_1] - \bar{\mathcal{E}}^{CE}[f_2]\|_{L^2(\mathbb{P})} \le C(w, n) \cdot \|f_1 - f_2\|_{L^2(P_X)}$
 $\bullet \ \ (\bar{\varepsilon}^{ME}, L^2(\tilde{P}_X))$ is a well-defined bounded linear operator such that boulos, Filom, Ravi Kannan (2022)]
 well-defined bounded linear operator such that
 $|\tilde{\mathcal{E}}^{CE}[f_1] - \tilde{\mathcal{E}}^{CE}[f_2]||_{L^2(\mathbb{P})} \le C(w,n) \cdot ||f_1 - f_2||_{L^2(P_X)}$
 $(w,n) = 1.$
 well-defined bounded linear operator such that
 $\begin{array}{l} \hbox{linear operator such that} \[2mm] \begin{array}{l} \hbox{linear operator such that} \[2mm] \[2mm] \hbox{Fp} \end{array} \leq C(w,n) \cdot \|f_1 - f_2\|_{L^2(P_X)} \[2mm] \[2mm] \hbox{linear operator such that} \[2mm] \begin{array}{l} \hbox{Fp} \leq \tilde{C}(w,n) \cdot \|f_1 - f_2\|_{L^2(\tilde{P}_X)} \[2mm] \hbox{where} \[2mm] \end{array} \] \approx h\big[v^{CE}(f_2)\big] \hbox{ in } L^2(\mathbb{P}). \end{array}$ • $(\bar{\xi}^{CE}, L^2(P_X))$ is a well-defined bounded linear operator such that
 $\|\bar{\xi}^{CE}[f_1] - \bar{\xi}^{CE}[f_2]\|_{L^2(\mathbb{P})} \le C(w, n) \cdot \|f_1 - f_2\|_{L^2(P_X)}$

If h is efficient then $C(w, n) = 1$.

• $(\bar{\xi}^{ME}, L^2(\bar{P}_X))$ is a well-defined boun

$$
\|\bar{\mathcal{E}}^{ME}[f_1] - \bar{\mathcal{E}}^{ME}[f_2]\|_{L^2(\mathbb{P})} \le \tilde{C}(w, n) \cdot \|f_1 - f_2\|_{L^2(\tilde{P}_X)}
$$

Note: $f_1(X) \approx f_2(X)$ in $L^2(\mathbb{P}) \Rightarrow h[v^{CE}(f_1)] \approx h[v^{CE}(f_2)]$ in $L^2(\mathbb{P})$.

Example: Rashomon effect on marginal explanations

Synthetic model

 $Z \sim Unif(-1,1)$ $X_1 = Z + \epsilon_1, \quad \epsilon_1 \sim \mathcal{N}(0, 0.05),$ $X_2 = \sqrt{2} \sin(Z(\pi/4)) + \epsilon_2, \quad \epsilon_2 \sim \mathcal{N}(0, 0.05),$ $X_3 \sim Unif([-1, -0.5] \cup [0.5, 1]).$

 $Y = f_*(X_1, X_2, X_3) + \epsilon_3 = 3X_2X_3 + \epsilon_3$

Continuity II

Questions regarding the marginal operator:

- Can the marginal operator be well-defined and bounded on a space equipped with $L^2(P_X)$ -norm?
- Is there any relationship between boundedness and dependencies?

To answer these questions it is necessary to consider the two cases:

- 1. $\tilde{P}_X \ll P_X$ i.e. \tilde{P}_X is absolutely continuous w.r.t. P_X
- 2. \tilde{P}_X is not absolutely continuous w.r.t. P_X

Lemma [AM, Kotsiopoulos, Filom, Ravi Kannan (2022)]

- Lemma [AM, Kotsiopoulos, Filom, Ravi Kannan (2022)]

 The marginal game (v^{ME}, H_X) on $H_X = (L^2(\tilde{P}_X)/H_X^0 \parallel \cdot \parallel_{L^2(P_X)})$ is well-defined if and or

 If $\tilde{P}_X \ll P_X$, $H_X = (L^2(\tilde{P}_X), \parallel \cdot \parallel_{L^2(P_X)})$ $\frac{0}{2}$ II \cdot II $\frac{1}{2}$ is well-defined if : , $\|\cdot\|_{L^2(P_X)}$) is well-defined if and only if $\,\tilde P_X \ll P_X.$ (P_X)) is well-defined if and
- If $\tilde{P}_X \ll P_X$, $H_X = (L^2(\tilde{P}_X), || \cdot ||_{L^2(P_X)})$
- **i.**

is manapology and the marginal game (v^{ME}, H_X) on $H_X = (L^2(\tilde{P}_X)/H_X^0, \|\cdot\|_{L^2(P_X)})$ is well-defined if and only if $\tilde{P}_X \ll P_X$.

if $\tilde{P}_X \ll P_X$, $H_X = (L^2(\tilde{P}_X), \|\cdot\|_{L^2(P_X)})$

if $\tilde{P}_X \ll P_X$ then $r_X := \frac{d^2Y_X}{$ Lemma [AM, Kotsiopoulos, Filom, Ravi Kannan (2022)]

• The marginal game (v^{ME}, H_X) on $H_X = (L^2(\tilde{P}_X)/H_X^0, ||\cdot||_{L^2(P_X)})$ is we

• If $\tilde{P}_X \ll P_X$, $H_X = (L^2(\tilde{P}_X), ||\cdot||_{L^2(P_X)})$

• If $\tilde{P}_X \ll P_X$ then $r_X := \frac{d}{d P_X} \in L^1(P_X$ $d\tilde{P}_X$ \subset $11(D)$ controls the amount of denoted $\frac{a\, F_X}{d\, P_X} \in L^1(P_X)$ controls the amount of dependencies in the sense of: om, Ravi Kannan (2022)]
 I_X) on $H_X = (L^2(\tilde{P}_X)/H_X^0, \|\cdot\|_{L^2(P_X)})$ is well-defined if a
 $\|\cdot\|_{L^2(P_X)}$)
 $\in L^1(P_X)$ controls the amount of dependencies in the se
 $W_1(\tilde{P}_X, P_X) \le \int |x| \cdot |r_X(x) - 1| P_X(dx)$

Continuity II

Theorem [AM, Kotsiopoulos, Filom, Ravi Kannan (2023,revised)]

Continuity II

Theorem [AM, Kotsiopoulos, Filom, Ravi Kannan (2023, revised)]

Suppose $\tilde{P}_X \ll P_X$

• Bounded case. Suppose $r_X \in L^{\infty}(P_X)$. Then $(\bar{\mathcal{E}}^{ME}, H_X)$ is a well-def
 $\|\bar{\mathcal{E}}^{ME}_{t}[f]\|_{\mathcal{E},\mathcal{E}} \leq (1 + \|r_Y -$ **Continuity II**

• Theorem [AM, Kotsiopoulos, Filom, Ravi Kannan (2023, revised)]
 Suppose $\tilde{P}_X \ll P_X$

• Bounded case. Suppose $r_X \in L^\infty(P_X)$. Then $(\bar{\mathcal{E}}^{ME}, H_X)$ is a **well-defined bounded linear** operator satisfyi ${\bf i}$ bounded linear operator satisfying
 $\cdot C_t(w) \cdot \|f\|_{L^2(P_X)}$

that

ilom, Ravi Kannan (2023, revised)]

\n≡
$$
L^{\infty}(P_X)
$$
. Then $(\bar{\mathcal{E}}^{ME}, H_X)$ is a **well-defined bounded linear** operator satisfying

\n $\|\bar{\mathcal{E}}_t^{ME}[f]\|_{L^2(\mathbb{P})} \leq (1 + ||r_X - 1||_{L^{\infty}(P_X)}) \cdot C_i(w) \cdot ||f||_{L^2(P_X)}$

\nLet there exists *T* ⊆ *S* and *Q* ⊆ −*S* such that

• Unbounded case.

$$
\sup\left\{\frac{[P_{X_T}\otimes P_{X_Q}](A\times B)}{P_{(X_T,X_Q)}(A\times B)}\cdot P_{X_Q}(B),\ A\in\mathcal{B}(\mathbb{R}^{|T|}),\ B\in\mathcal{B}(\mathbb{R}^{|Q|}),P_{(X_T,X_Q)}(A\times B)>0\right\}=\infty.\ (UG)
$$

Then the map $f \in H_X \mapsto v^{ME}(S; X, f) \in L^2(\mathbb{P})$ is unbounded.

Suppose (UG) holds with $T = \{i\}$ and $Q = \{j\}$ for two distinct indices $i, j \in \{1, 2, ..., n\}$ and that the game value weights $w(S, n) > 0$ for each proper subset $S \subset N$. Then $(\bar{\mathcal{E}}_i^{ME}, H_X)$, $(\bar{\mathcal{E}}_j^{ME}, H_X)$, and $(\bar{\mathcal{E}}^{ME}, H_X)$ are unbounded linear operators.

Mitigation. Grouping features as a stabilization mechanism.

Computing explanations of groups formed by dependencies (e.g. variable clustering tree)

- Unifies marginal and conditional explanations and achieve stability of marginal explanations
- Removes splits of explanations across dependencies

Cluster Dendrogram

Quotient game explainers

Quotient game explainers

Given $\mathcal{P} = \{S_1, S_2, ... S_m\}$, treat each group predictor X_{S_j} as a player $j \in \{1, 2, ..., m\}$

Quotient game $ev^{\mathcal{P}}(A) = v(U_{j \in A}S_j)$, $A \subset M = \{1, 2, ..., m\}$

Quotient game explainers: $f \mapsto h_j[M, v^$ as a player $j \in \{1,2,...,m\}$
 m }
 m ^{ME}} Quotient game: $v^{\mathcal{P}}(A) = v(U_{j\in A}S_j)$, $A \subset M = \{1,2,...,m\}$ group predictor X_{S_j} as a player $j \in \{1,2,...,m\}$, $A \subset M = \{1,2,...m\}$
 $v^{\mathcal{P}}(f)\vert, v \in \{v^{CE}, v^{ME}\}$ Quotient game explainers

Given $\mathcal{P} = \{S_1, S_2, ... S_m\}$, treat each group predictor X_{S_f} as a player $j \in \{1, 2, ..., m\}$

Quotient game $\{v^{\mathcal{P}}(A) = v(\bigcup_{f \in A} S_j), A \subset M = \{1, 2, ..., m\}$

Quotient game explainers: $f \mapsto h_j[M, v^$ Quotient game explainers: $f \mapsto h_j\big[M, v^{\mathcal{P}}(f)\big]$, $v \in \{v^{CE}, v^{ME}\}\$ lainers
 S_m , treat each group predictor X_{S_j} as a player $j \in \{1, 2, ..., m\}$
 $|S_i| = v(U_{j \in A} S_j)$, $A \subset M = \{1, 2, ..., m\}$

ners: $f \mapsto h_j[M, v^{\mathcal{P}}(f)]$, $v \in \{v^{CE}, v^{ME}\}$
 $|S_i| = \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty}$ $\mathcal{L}(S_m)$, treat each group predictor X_{S_f} as a player $j \in \{1, 2, ..., m\}$
 $(A) = v(\bigcup_{f \in A} S_f)$, $A \subset M = \{1, 2, ..., m\}$

ainers: $f \mapsto h_j[M, v^{\mathcal{P}}(f)\}$, $v \in \{v^{CE}, v^{ME}\}$
 $\mathcal{L}(S_m)$
 $\mathcal{L}(S_m)$, $\mathcal{L}(S_m)$ are independent

Proposition [AM, Kotsiopoulos, Filom, Ravi Kannan (2023,revised)]

• If groups $\{X_{\mathcal{S}_1}, X_{\mathcal{S}_2}, ..., X_{\mathcal{S}_m}\}$ are independent, $h[\nu]$ is linear,

 $h_j[M, v^{CE, \mathcal{P}}(f)] = h_j[M, v^{ME, \mathcal{P}}(f)]$ and hence continuous in $L^2(P_X)$.

Quotient game:
$$
v^P(A) = v(U_{j\in A}S_j)
$$
, $A \subset M = \{1,2,...m\}$
\nQuotient game explains: $f \mapsto h_j[M, v^P(f)]$, $v \in \{v^{CE}, v^{ME}\}$
\nProposition [AM, Kotsiopoulos, Film, Rawi Kannan (2023, revised)]
\n• If groups $\{X_{S_1}, X_{S_2}, ..., X_{S_m}\}$ are independent, $h[v]$ is linear,
\n $h_j[M, v^{CE, P}(f)] = h_j[M, v^{ME, P}(f)]$ and hence continuous in $L^2(P_X)$.
\n• Let $Q_A = U_{j\in A}S_j$. If $r_A = \frac{d(P_{XQ_A} \otimes P_{X-Q_A})}{dP_X}$ is bounded for $A \subseteq M$, then
\n $H_X \ni f \rightarrow h_j[M, v^{ME, P}(f)]$ is bounded in $L^2(P_X)$ with the bound
\n $\sim C(w) \cdot \max_{A \subseteq M} (r_A - 1)$

References

- J.F. Banzhaf, Weighted voting doesn't work: a mathematical analysis. Rutgers Law Review 19, 317-343, (1965).
- P. Hall, N. Gill, An Introduction to Machine Learning Interpretability, O'Reilly. (2018).
- S.M. Lundberg and S.-I. Lee, A unified approach to interpreting model predictions, 31st Conference on Neural Information Processing Systems, (2017).
- A. Miroshnikov, K. Kotsiopoulos, A. Ravi Kannan, Mutual information-based group explainers with coalition structure for machine learning model explanations, arXiv preprint arXiv:2102.10878v4 (2022). Revised version: A. Miroshnikov, K. Kotsiopoulos, A. Ravi Kannan, Stability theory of game-theoretic group feature explanations for machine learning models, arXiv preprint, arXiv:2102.10878v6 (2024).
- L. S. Shapley, A value for n-person games, Annals of Mathematics Studies, No. 28, 307-317 (1953).
- G. Owen, Values of games with a priori unions. In: Essays in Mathematical Economics and Game Theory (R. Henn and O. Moeschlin, eds.), Springer, 76 {88 (1977).
- E. Strumbelj, I. Kononenko, Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst., 41, 3, 647-665, (2014).