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Motivation

Introduction

• Contemporary predictive ML models are complex: 

Neural Networks (NN), Gradient Boosting Machines (GBM), Semi-supervised methods

• Interpretability is crucial for business adoption, regulatory oversight, and human acceptance and trust:

Banking, Insurance, Healthcare

• Accuracy may come at the expense of interpretability [P. Hall, 2018].

Regulatory requirements

• ML models, and strategies that rely on ML models, are subject to laws and regulations (e.g. ECOA, EEOA).

• Financial institutions in the United States (US) are required under the ECOA to notify declined or negatively 
impacted applicants of the main factors that led to the adverse action.

• Common approaches: Post-hoc individualize model explanations, Self-interpretable models.



Individualized explanations

Notation

• 𝑥 → 𝑓 𝑥 ML model (classification score or regressor)

• 𝑋, 𝑌 , where 𝑋 = (𝑋ଵ, … , 𝑋) are features, 𝑌 ∈ ℝ is response variable on the probability space (Ω, ℱ, ℙ).

• 𝑃 a pushforward probability measure, 𝑃 𝐴 = ℙ(𝑋 ∈ 𝐴), ℬ(ℝ) .

Definition

A model explainer quantifies the contribution of an observation 𝑥 = 𝑥ଵ, 𝑥ଶ, … 𝑥 ∼ 𝑋 to the value 𝑓(𝑥).  Formally: 


 ଵ ଶ 



where the model 𝑓, the random vector 𝑋 and model implementation ℐ serve as parameters.



Games and game values
Objective: Study explanations based on game values for the marginal and conditional games.

• Cooperative game 𝑁, 𝑣 .

o 𝑁 = 1,2, … , 𝑛 , set of players.

o 𝑣 is utility. 𝑣(𝑆) is the worth of the coalition 𝑆 ⊆ 𝑁.

• Game value. A map 𝑁, 𝑣 → ℎ 𝑁, 𝑣 = ℎ 𝑁, 𝑣 ୀଵ
 ∈ ℝ.

Assumption: We study game values in the marginalist form

ℎ 𝑁, 𝑣 = ∑ 𝑤 𝑆, 𝑛 ⋅ 𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆  ௌ⊆ே∖ 

ℎ is linear (LN), symmetric (SM). 

Example: Shapley value [Shapley, 1953] 

𝜑 𝑣 = ∑
ୱ! ି௦ିଵ !

!
𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆ௌ⊆ே∖  which is linear, symmetric, efficient (EF)  ∑ 𝜑 𝑁, 𝑣 = 𝑣(𝑁) .

Other examples: Banzhaf value (1965), Owen value (1976).



Individualized explanations with deterministic games for ML models

Definition

Given (𝑥, 𝑋, 𝑓) and 𝑆 ⊂ 𝑁 = {1,2, … 𝑛}

• 𝑣∗
ா 𝑆, 𝑥; 𝑋, 𝑓 =  𝔼[𝑓(𝑋ௌ, 𝑋ିௌ)|𝑋ௌ = 𝑥௦],  conditional game

• 𝑣∗
ொ 𝑆, 𝑥; 𝑋, 𝑓 = 𝔼 𝑓 𝑥ௌ, 𝑋ିௌ , marginal game

Definition

Given a game value ℎ[𝑁, 𝑣] individualized conditional and marginal explanations are defined:

• 𝑥 → ℎ∗
ா 𝑥 = ℎ 𝑁, 𝑣∗

ா(⋅, 𝑥) ∈ ℝ,   𝑥 → ℎ∗
ொ 𝑥 = ℎ 𝑁, 𝑣∗

ொ(⋅, 𝑥) ∈ ℝ

Game theoretic approach for ML explainability has been explored in Štrumbelj & Kononenko (2014), Lundberg & Lee (2017)



ML Games

Conditional game 

• 𝑣∗
ா explores the contribution of 𝑥 ∼ 𝑋 in the context of the observational 

graph  Ω ∋ 𝜔 → 𝑋 𝜔 , 𝑓 𝑋 𝜔 .

• ℎ[𝑁, 𝑣∗
ா] are “consistent” with the data and 𝑓 𝑋

Marginal game

• 𝑣∗
ொ explores the input-output relationship 𝑥, 𝑓 𝑥 , 𝑥 ∼ 𝑋.

• ℎ[𝑁, 𝑣∗
ொ] are “consistent” with the model 𝑓(𝑥)

𝑌 = 𝑓 𝑋 = 𝑋ଶ𝑋ଷ |  𝑋ଶ = sin 𝜋𝑋ଵ + 𝜖

Marginal vs conditional (informally)



ML GamesRandom games and operators

In our analysis we study game values of random games.

Random games

• 𝑣ா 𝑆; 𝑋, 𝑓 = 𝑣∗
ா 𝑆, 𝑥; 𝑋, 𝑓 |௫ୀ ∈ (Ω, ℱ, ℙ)

• 𝑣ொ 𝑆; 𝑋, 𝑓 = 𝑣∗
ொ 𝑆, 𝑥; 𝑋, 𝑓 |௫ୀ ∈ (Ω, ℱ, ℙ)

Operators based on 𝒉[𝑵, 𝒗]

• ℰ̅ா 𝑓 = ℰଵ̅
ா, … , ℰ̅

ா 𝑓 : 𝐿ଶ ℝ, 𝑃 ↦ 𝐿ଶ Ω, ℙ    by  ℰ̅
ா[𝑓] ≔ ℎ 𝑁, 𝑣ா ⋅; 𝑋, 𝑓

• ℰ̅ொ 𝑓 = ℰଵ̅
ொ, … , ℰ̅

ொ [𝑓]: 𝐿ଶ ℝ, 𝑃෨ ↦ 𝐿ଶ Ω, ℙ  by    ℰ̅
ொ[𝑓] ≔ ℎ 𝑁, 𝑣ொ ⋅; 𝑋, 𝑓

where 𝑃෨ =
ଵ

ଶ
∑ 𝑃ೄ

⊗ 𝑃షೄௌ⊆ே .

Note: 𝑃෨ = 𝑃 if features are independent.



Conditional
Continuity I

Theorem [AM, Kotsiopoulos, Filom, Ravi Kannan (2022)]

• ℰ̅ா, 𝐿ଶ 𝑃 is a well-defined bounded linear operator such that

ℰ̅ா 𝑓ଵ − ℰ̅ா 𝑓ଶ మ(ℙ) ≤ 𝐶(𝑤, 𝑛) ⋅ 𝑓ଵ − 𝑓ଶ మ 

If ℎ is efficient then 𝐶 𝑤, 𝑛 = 1.

• ℰ̅ொ, 𝐿ଶ 𝑃෨ is a well-defined bounded linear operator such that

ℰ̅ொ 𝑓ଵ − ℰ̅ொ 𝑓ଶ మ(ℙ) ≤ 𝐶ሚ(𝑤, 𝑛) ⋅ 𝑓ଵ − 𝑓ଶ మ ෨

Note: 𝑓ଵ 𝑋 ≈ 𝑓ଶ 𝑋 in 𝐿ଶ ℙ ⇒ ℎ 𝑣ா 𝑓ଵ ≈ ℎ 𝑣ா 𝑓ଶ in 𝐿ଶ(ℙ).



Conditional
Example: Rashomon effect on marginal explanations

Synthetic model



Conditional

Continuity II

Questions regarding the marginal operator:

• Can the marginal operator be well-defined and bounded on a space equipped with 𝐿ଶ(𝑃)-norm?

• Is there any relationship between boundedness and dependencies?

To answer these questions it is necessary to consider the two cases:

1. 𝑃෨ ≪ 𝑃 i.e.  𝑃෨ is absolutely continuous w.r.t. 𝑃

2. 𝑃෨ is not absolutely continuous w.r.t. 𝑃



Marginal operator instability

Lemma [AM, Kotsiopoulos, Filom, Ravi Kannan (2022)]

• The marginal game 𝑣ொ, 𝐻 on 𝐻 = 𝐿ଶ 𝑃෨ /𝐻
, ‖ ⋅ ‖మ() is well-defined if and only if  𝑃෨ ≪ 𝑃.

• If 𝑃෨ ≪ 𝑃, 𝐻 = 𝐿ଶ 𝑃෨ , ‖ ⋅ ‖మ()

• If 𝑃෨ ≪ 𝑃 then 𝑟 ≔
ௗ ෨

ௗ 
∈ 𝐿ଵ(𝑃) controls the amount of dependencies in the sense of:

𝑊ଵ 𝑃෨, 𝑃 ≤ ∫ 𝑥 ⋅ 𝑟 𝑥 − 1  𝑃 𝑑𝑥



Marginal operator instability
Continuity II

Theorem [AM, Kotsiopoulos, Filom, Ravi Kannan (2023,revised)]

Suppose 𝑃෨ ≪ 𝑃

• Bounded case. Suppose 𝑟 ∈ 𝐿ஶ(𝑃). Then ℰ̅ொ, 𝐻 is a well-defined bounded linear operator satisfying

ℰ̅
ொ 𝑓

మ(ℙ)
≤ 1 + 𝑟 − 1 ಮ 

⋅ 𝐶(𝑤) ⋅ 𝑓 మ 

• Unbounded case.



Explanations under dependencies

Mitigation. Grouping features as a stabilization mechanism.

Computing explanations of groups formed by dependencies (e.g. variable clustering tree)

• Unifies marginal and conditional explanations and achieve stability of marginal explanations

• Removes splits of explanations across dependencies



Quotient game explainers

Quotient game explainers

Given 𝒫 = {𝑆ଵ, 𝑆ଶ, … 𝑆}, treat each group predictor 𝑋ௌೕ
as a player 𝑗 ∈ {1,2, … , 𝑚}

Quotient game: 𝑣𝒫 𝐴 = 𝑣 ⋃∈𝑆 , 𝐴 ⊂ 𝑀 = 1,2, … 𝑚

Quotient game explainers: f ↦ ℎ 𝑀, 𝑣𝒫(𝑓) , 𝑣 ∈ {𝑣ா, 𝑣ொ}

Proposition [AM, Kotsiopoulos, Filom, Ravi Kannan (2023,revised)] 

• If groups {𝑋ௌభ
, 𝑋ௌమ

, … , 𝑋ௌ
} are independent, ℎ[𝑣] is linear,

ℎ 𝑀, 𝑣ா,𝒫(𝑓) = ℎ 𝑀, 𝑣ொ,𝒫(𝑓) and hence continuous in 𝐿ଶ(𝑃).

• Let 𝑄 =∪∈ 𝑆.  If 𝑟 =
ௗ ೂಲ

⊗షೂಲ

ௗ
is bounded for 𝐴 ⊆ 𝑀, then

𝐻 ∋ 𝑓 → ℎ 𝑀, 𝑣ொ,𝒫(𝑓) is bounded in 𝐿ଶ(𝑃) with the bound 

~ 𝐶 𝑤 ⋅ max
⊆ெ

(𝑟 − 1)
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