Notes on game theory with finitely many players with applications to ML explainability

Alexey Miroshnikov

Introduction

- Contemporary predictive ML models are complex:
- Neural networks
- Gradient Boosting Machines
- Random Forests
- Semi-supervised methods
- Accuracy versus interpretability [P. Hall, 2018]. Accuracy comes at the expense of interpretability:
- Linear models is easy to interpret, $Y=a_{1} X_{1}+\cdots a_{n} X_{n}$
- Nonlinear models (GBM, RF) are difficult to interpret.
- Interpretability is crucial for business adoption, model documentation, regulatory oversight, and human acceptance and trust:
- Banking [P. Hall et al. 2020]
- Insurance
- Healthcare

Some approaches:

- Self-explainable models
- Post-hoc explanations

Explainers

- Data: (X, Y), predictors $X \in \mathbb{R}^{n}$, response $Y \in \mathbb{R}$
- Model: $f(x)=\widehat{\mathbb{E}}[Y \mid X=x]$
- Model explainer quantifies the contribution of predictor(s) to the value $f(x), x \in \operatorname{supp}\left(P_{X}\right)$,

$$
E[x ; f]=\left[E_{1}(x ; f), E_{2}(x ; f), \ldots E_{2}(x ; f)\right]
$$

Motivational examples [from Ribeiro et al. "Why should I trust you?"]

Figure 4: Explaining an image classification prediction made by Google's Inception neural network. The top 3 classes predicted are "Electric Guitar" $(p=0.32)$, "Acoustic guitar" ($p=0.24$) and "Labrador" $(p=0.21)$

(a) Husky classified as wolf

(b) Explanation

Figure 11: Raw data and explanation of a bad model's prediction in the "Husky vs Wolf" task.

Partial Dependence Function (PDP) [Friedman, 2001]

Given a sample $\boldsymbol{x}=\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{-\boldsymbol{i}}\right),-i=\{1,2, \ldots, n\} \backslash\{i\}$:

$$
x_{i} \rightarrow P D P_{i}\left(x_{i} ; f\right)=\mathbb{E}\left[f\left(x_{i}, X_{-i}\right)\right] \approx \frac{1}{N} \sum_{j=1}^{N} f\left(x_{i}, X_{-i}^{(j)}\right)
$$

Example

$$
\begin{aligned}
& f(X)=f_{1}\left(X_{1}\right)+f_{2}\left(X_{2}\right)+\cdots+f_{n}\left(X_{n}\right) \\
& P D P_{i}\left(x_{i} ; f\right)-\mathbb{E}[f(X)]=f_{i}\left(x_{i}\right)-\mathbb{E}\left[f_{i}\left(X_{i}\right)\right]
\end{aligned}
$$

Partial Dependence Function (PDP) [Friedman, 2001]

Given a sample $\boldsymbol{x}=\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{-\boldsymbol{i}}\right),-i=\{1,2, \ldots, n\} \backslash\{i\}$:

$$
x_{i} \rightarrow P D P_{i}\left(x_{i} ; f\right)=\mathbb{E}\left[f\left(x_{i}, X_{-i}\right)\right] \approx \frac{1}{N} \sum_{j=1}^{N} f\left(x_{i}, X_{-i}^{(j)}\right)
$$

Example

$$
\begin{aligned}
& f(X)=f_{1}\left(X_{1}\right)+f_{2}\left(X_{2}\right)+\cdots+f_{n}\left(X_{n}\right) \\
& P D P_{i}\left(x_{i} ; f\right)-\mathbb{E}[f(X)]=f_{i}\left(x_{i}\right)-\mathbb{E}\left[f_{i}\left(X_{i}\right)\right]
\end{aligned}
$$

why not use conditional expectation?
$\mathbb{E}\left[f(X) \mid X=x_{i}\right] \approx \mathbb{E}\left[Y \mid X=x_{i}\right]$ explains the data (response) not the model:
$f(x)=x_{1}+x_{2}, Y=f(X)+\epsilon, X_{i}=Z+\epsilon_{i}, \mathbb{E}\left[X_{i}\right]=0 \Rightarrow \mathbb{E}\left[f\left(x_{i}, X_{-i}\right)\right]=x_{i}, \mathbb{E}\left[f(X) \mid X=x_{i}\right] \approx 2 x_{i}$

Example from Hastie et al [Elements of Machine Learning, p. 373,374]
Analysis of the house value versus other predictors using GBM:

Interactions issues of PDPs [example from Goldstein et al, 2015]

$$
\begin{aligned}
& X_{1}, X_{2}, X_{3} \sim \operatorname{Unif}[-1,1] \\
& Y=f(X)+\epsilon=0.2 X_{1}-5 X_{2}+10 X_{2} 1_{\left\{X_{3} \geq 0\right\}}
\end{aligned}
$$

(a) Scatterplot of Y versus X_{2}

(b) PDP

Games and game values

Game
n players, $N=\{1,2, \ldots, n\}$

- Game is a super-additive function $v(S), S \subset N, v(\varnothing)=0$
- $v(N)$ is payoff of the game (think of profit)
- $v(S)$ is the worth of the coalition S

Game value
$\operatorname{Map} v \rightarrow \mathrm{~h}[N, v]=\left(h_{1}[N, v], h_{2}[N, v], \ldots, h_{n}[N, v]\right)$

Example 1: Shapley value
$\varphi_{i}[v]=\sum_{S \subset N} \frac{(s-1)!(n-s)!}{n!}[v(S)-v(S \backslash\{i\})]$, [Shapley, 1953]

- (LN) φ is linear: $\varphi[v+w]=\varphi[v]+\varphi[w]$
- (EF) φ is efficient: $\sum_{i} \varphi_{i}[v]=v(N)$
- (SM) φ is symmetric (abstract games)
$\Rightarrow(\mathrm{NP})$ null player property: null player $i \in N$ of $v \Rightarrow \varphi_{i}[v]=0$.
remark: φ is a unique game value that satisfies (LN), (EF), (SM), [Shapley, 1953].

Example 1: Shapley value
$\varphi_{i}[v]=\sum_{S \subset N} \frac{(s-1)!(n-s)!}{n!}[v(S)-v(S \backslash\{i\})]$, [Shapley, 1953]

- (L) φ is linear: $\varphi[v+w]=\varphi[v]+\varphi[w]$
- (E) φ is efficient: $\sum_{i} \varphi_{i}[v]=v(N)$
- (S) φ is symmetric (abstract games)
$\Rightarrow(\mathrm{N})$ null player property: null player $i \in N$ of $v \Rightarrow \varphi_{i}[v]=0$.
remark: φ is a unique game value that satisfies (L), (E), (S), [Shapley, 1953].

Example 2: Banzhaf value

$$
B z_{i}[v]=\sum_{S \subset N} \frac{1}{2^{n}}[v(S)-v(S \backslash\{i\})],[\text { Banzhaf, 1965] }
$$

- BZ satisfies (L), (S), total power property.
remark: The Shapley value that assumes that every player is equally likely to join any coalition of the same size and that all coalitions of a given size are equally likely. The Banzhaf value assumes that every player is equally likely to enter any coalition.

Game theoretic approach for ML explainability has been explored in Štrumbelj \& Kononenko (2014), Lundberg \& Lee (2017)

Given (X, f) and $S \subset N=\{1,2, \ldots n\}$

- $v^{C E}(S ; x, f)=\mathbb{E}\left[f\left(X_{S}, X_{-S}\right) \mid X_{S}=x_{S}\right]$, conditional game
- $v^{M E}(S ; x, f)=\mathbb{E}\left[f\left(x_{S}, X_{-S}\right)\right]$, marginal game
- $\varphi\left[v^{C E}\right], \varphi\left[v^{M E}\right] \in \mathbb{R}^{n}$ are conditional and marginal explanations, respectively

Interactions are handled better with Shapley values (application to the example in [Goldstein et al, 2015])

marginal Shapley

Remarks: Some facts for $v \in\left\{v^{M E}, v^{C E}\right\}$

- $v^{M E}, v^{C E}$ are not cooperative games because $v^{M E}(\varnothing)=v^{C E}(\varnothing)=\mathbb{E}[f(X)]$

$$
\varphi_{0}=\mathbb{E}[f(X)] \Rightarrow \sum_{i=0}^{n} \varphi_{i}\left[v^{M E}(x ; f)\right]=\sum_{i=0}^{n} \varphi_{i}\left[v^{C E}(x ; f)\right]=f(x)
$$

- $v^{M E}(S ; X, f), v^{C E}(S ; X, f)$ are random games where randomness comes from predictors.
- Random games are linear with respect to models. The maps

$$
f \rightarrow \varphi\left[v^{M E}(X ; f)\right], f \rightarrow \varphi\left[v^{C E}(X ; f)\right]
$$

are linear operators on appropriate domains [Miroshnikov et al 2021b].

- For additive models $f=\sum f_{i}\left(X_{i}\right)$

$$
\varphi_{i}\left[v^{M E}(X ; f)\right]=f_{i}\left(X_{i}\right)-\mathbb{E}\left[f_{i}(X)\right]
$$

but in general PDPs and marginal Shapley value differ.

Example [Miroshnikov et al. 2021b]

$$
\begin{aligned}
& Y=\prod_{i=1}^{4} f_{i}\left(X_{i}\right)+\epsilon=f(X)+\epsilon \\
& f_{1}\left(X_{1}\right)=\operatorname{logistic}\left(2 X_{1}\right),
\end{aligned} \begin{array}{lr}
f_{2}(X)=\operatorname{sgn}\left(X_{2}\right) \sqrt{\left|X_{2}\right|} \\
f_{3}\left(X_{3}\right)=\sin \left(X_{3}\right), & f_{4}\left(X_{4}\right)=\operatorname{logistic}\left(5 X_{4}\right)
\end{array}
$$

$$
\left(X_{1}, X_{2}\right) \sim \mathcal{N}\left((1,1), \Sigma_{1}\right), \quad \Sigma_{1}=\left[\begin{array}{cc}
26 & -10 \\
-10 & 26
\end{array}\right]
$$

$$
\left(X_{3}, X_{4}\right) \sim \mathcal{N}\left((1,1), \Sigma_{2}\right), \quad \Sigma_{2}=\left[\begin{array}{cc}
10 & 6 \\
6 & 10
\end{array}\right]
$$

Question: What is the difference between marginal and conditional games?

Conditional game

- $v^{C E}$ explores the joint (X, Y)
- $\varphi\left[v^{C E}\right]$ are consistent with the data and $f(X)$
- Infeasible due to the curse of dimensionality [Hastie et al].

Marginal game

- $v^{M E}$ explores the model $f(x)$
- $\varphi\left[v^{M E}\right]$ are consistent with the model $f(x)$
- Complexity $O\left(2^{n}\right)$

$$
Y=X_{2} X_{3} \quad \mid X_{2}=\sin \left(\pi X_{1}\right)+\epsilon
$$

Example from [Miroshnikov et al 2021b]

Game values with coalitional structure

In cooperative game theory with coalition structure, the objective is to compute the payoffs of players in a game where players form unions acting in agreement within the union: $\mathcal{P}=\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{m}\right\}, \cup S_{j}=\{1,2, \ldots, n\}$

Coalitional value

Given a coalition structure (N, v, \mathcal{P}) where $\mathcal{P}=\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{n}\right\}$ the coalitional game is a map

$$
g[N, v, \mathcal{P}] \in \mathbb{R}^{n}
$$

- Owen values [Owen, 1977]
- Banzhaf-Owen values [Owen, 1982]
- Two-step Shapley [Kamijo, 2009]
remark: Shapley value is a trivial coalitional value

Game values with coalitional structure

In cooperative game theory with coalition structure, the objective is to compute the payoffs of players in a game where players form unions acting in agreement within the union: $\mathcal{P}=\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{m}\right\}, \cup S_{j}=\{1,2, \ldots, n\}$

Coalitional value

Given a coalition structure $(N, v, \mathcal{P}), \mathcal{P}=\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{m}\right\}$, the coalitional game is a map

$$
g[N, v, \mathcal{P}] \in \mathbb{R}^{n}
$$

- Owen values [Owen, 1977]
- Banzhaf-Owen values [Owen, 1982]
- Two-step Shapley [Kamijo, 2009]
remark: Shapley value is a trivial coalitional value

Game values with coalitional structure

In cooperative game theory with coalition structure, the objective is to compute the payoffs of players in a game where players form unions acting in agreement within the union: $\mathcal{P}=\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{m}\right\}, \cup S_{j}=\{1,2, \ldots, n\}$

Coalitional value

Given a coalition structure $(N, v, \mathcal{P}), \mathcal{P}=\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{m}\right\}$, the coalitional game is a map

$$
g[N, v, \mathcal{P}] \in \mathbb{R}^{n}
$$

- Owen values [Owen, 1977]
- Banzhaf-Owen values [Owen, 1982]
- Two-step Shapley [Kamijo, 2009]

$$
\begin{aligned}
O w_{i}[N, v, \mathcal{P}] & =\sum_{R \subset M \backslash\{j\}} \sum_{T \subset S_{j} \backslash\{i\}} \frac{r!(m-r-1)!}{m!} \frac{1!\left(s_{j}-t-1\right)!}{s_{j}!}(v(Q \cup T \cup\{i\})-v(Q \cup T)) \\
B z O w_{i}[N, v, \mathcal{P}] & =\sum_{R \subset M \backslash\{j\}} \sum_{T \subset S_{j} \backslash\{i\}} \frac{1}{2^{m-1}} \frac{1}{2^{s_{j}-1}}(v(Q \cup T \cup\{i\})-v(Q \cup T)) \\
\text { where } t & =|T|, s_{j}=\left|S_{j}\right|, r=|R|, \text { and } S_{j} \in \mathcal{P}, Q=\cup_{r \in R} S_{r} \\
T S h_{i}[N, v, \mathcal{P}] & =\varphi_{i}\left[S_{j}, v\right]+\frac{1}{\left|S_{j}\right|}\left(\varphi_{j}\left[M, v^{\mathcal{P}}\right]-v\left(S_{j}\right)\right), \quad i \in S_{j} .
\end{aligned}
$$

Quotient game: $v^{\mathcal{P}}(A)=v\left(\mathrm{U}_{j \in A} S_{j}\right)$

Useful properties for ML explainability

- (2SF) 2-step formulation

Coalitional value can be obtained playing a quotient-like game and then a game inside the union.

- (QP) Quotient game property

The sum of the payoffs of the players in a union equal to the payoff of the union in the quotient game.

Examples

- (EF) Shapley values
- (QP,2SF,EF) Owen values, Two-step Shapley
- (2SF) Banzhaf-Owen
- (QP,2SF) Symmetrical Banzhaf-Owen

$$
\mathcal{P}=\left\{S_{1}, S_{2}, S_{3}\right\}, N=\{1,2, \ldots, 9\}
$$

Use of coalitional values in ML explainability

$$
\mathcal{P}=\left\{S_{1}, S_{2}, S_{3}\right\}, N=\{1,2, \ldots, 9\}
$$

- Forming partitions by business/scientific/independence reasons
- Reduction in complexity $O\left(2^{\left|S_{j}\right|+|\mathcal{P}|}\right)$
- Generalization to partition trees and graphs [Wang et al. 2020]
- Fairness explainability [Miroshnikov et al. 2021a]
- Unifying marginal and conditional approaches [Aas et al. 2020, Miroshnikov et al. 2021b]

References

- J.F. Banzhaf, Weighted voting doesn't work: a mathematical analysis. Rutgers Law Review 19, 317-343, (1965).
- H. Chen, J. Danizek, S. Lundberg, S.-I. Lee, True to the Model or True to the Data. arXiv preprint arXiv:2006.1623v1, (2020)
- J. H. Friedman, Greedy function approximation: a gradient boosting machine, Annals of Statistics, Vol. 29, No. 5, 1189-1232,(2001).
- A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin, Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation. Journal of Computational and Graphical Statistics, 24:1, 44-65 (2015).
- P. Hall, B. Cox, S. Dickerson, A. Ravi Kannan, R. Kulkarni, N. Schmidt, A United States Fair Lending Perspective on Machine Learning. Front. Artif. Intell. 4:695301. doi: 10.3389/frai. 2021.695301 (2021).
- P. Hall, N. Gill, An Introduction to Machine Learning Interpretability, O'Reilly. (2018).
- T. Hastie, R. Tibshirani and J. Friedman The Elements of Statistical Learning, 2-nd ed., Springer series in Statistics (2016).
- S.M. Lundberg and S.-I. Lee, A unified approach to interpreting model predictions, 31st Conference on Neural Information Processing Systems, (2017).
- Y. Kamijo, A two-step Shapley value in a cooperative game with a coalition structure. International Game Theory Review 11 (2), 207-214, (2009).
- A. Miroshnikov, K. Kotsiopoulos, R. Franks, A. Ravi Kannan, Wasserstein-based fairness interpretability framework for machine learning models, arXiv preprint (2021a), arXiv:2011.03156.
- A. Miroshnikov, K. Kotsiopoulos, A. Ravi Kannan, Mutual information-based group explainers with coalition structure for machine learning model explanations, arXiv preprint (2021b), arXiv:2102.10878.
- L. S. Shapley, A value for n-person games, Annals of Mathematics Studies, No. 28, 307-317 (1953).
- G. Owen, Values of games with a priori unions. In: Essays in Mathematical Economics and Game Theory (R. Henn and O. Moeschlin, eds.), Springer, 76 \{88 (1977).
- G. Owen, Modification of the Banzhaf-Coleman index for games with apriory unions. In: Power, Voting and Voting Power (M.J. Holler, ed.), Physica-Verlag, 232-238. and Game Theory (R. Henn and O. Moeschlin, eds.), Springer, 76-88 (1982).
- M.T. Ribeiro, S. Singh and C. Guestrin, "Why should I trust you?" Explaining the predictions of any classifier, 22nd Conference on Knowledge Discovery and Data Mining, (2016).
- E. Strumbelj, I. Kononenko, Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst., 41, 3, 647-665, (2014).
- J. Wang, J. Wiens, S. Lundberg Shapley Flow: A Graph-based Approach to Interpreting Model Predictions arXiv preprint arXiv:2010.14592, (2020).

