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Introduction

• Contemporary predictive ML models are complex: 

o Neural networks
o Gradient Boosting Machines
o Random Forests
o Semi-supervised methods

• Accuracy versus interpretability [P. Hall, 2018]. Accuracy comes at the expense of interpretability:

o Linear models is easy to interpret, 𝑌 = 𝑎 𝑋 + ⋯ 𝑎 𝑋
o Nonlinear models (GBM, RF) are difficult to interpret.

• Interpretability is crucial for business adoption, model documentation, regulatory oversight, and human 
acceptance and trust:

o Banking [P. Hall et al. 2020]
o Insurance
o Healthcare



Explainers

• Data: predictors , response 

• Model: 

• Model explainer quantifies the contribution of predictor(s) to the value , ,

Some approaches:

• Self-explainable models

• Post-hoc explanations



Motivational examples [from Ribeiro et al. “Why should I trust you?”]



Partial Dependence Function (PDP)  [Friedman, 2001]

Given a sample 𝒙 = (𝒙𝒊, 𝒙 𝒊), −𝑖 = 1,2, … , 𝑛 \{𝑖}:

𝑥 → 𝑃𝐷𝑃 𝑥 ; 𝑓 = 𝔼 𝑓 𝑥 , 𝑋 ≈ ∑ 𝑓(𝑥 , 𝑋
( )

) 

Example

𝑓 𝑋 = 𝑓 𝑋 + 𝑓 𝑋 + ⋯ + 𝑓 (𝑋 )

𝑃𝐷𝑃 𝑥 ; 𝑓 − 𝔼 𝑓 𝑋 = 𝑓 𝑥 − 𝔼 𝑓 𝑋
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why not use conditional expectation?

𝔼 𝑓 𝑋 𝑋 = 𝑥 ≈ 𝔼 𝑌 𝑋 = 𝑥 explains the data (response) not the model: 

𝑓 𝑥 = 𝑥 + 𝑥 , 𝑌 = 𝑓 𝑋 + 𝜖, 𝑋 = 𝑍 + 𝜖 , 𝔼 𝑋 = 0 ⇒  𝔼 𝑓 𝑥 , 𝑋 = 𝑥 , 𝔼 𝑓 𝑋 𝑋 = 𝑥 ≈ 2𝑥



Example from Hastie et al [Elements of Machine Learning, p. 373,374]

Analysis of the house value versus other predictors using GBM:



Basic explainers

Interactions issues of PDPs [example from Goldstein et al, 2015]

𝑋 , 𝑋 , 𝑋 ~𝑈𝑛𝑖𝑓 −1,1

𝑌 = 𝑓 𝑋 + 𝜖 = 0.2𝑋 − 5𝑋 + 10𝑋 1{ }



Games and game values

Game

𝑛 players, 𝑁 = 1,2, … , 𝑛  

• Game is a super-additive function 𝑣(𝑆),  𝑆 ⊂ 𝑁, 𝑣 ∅ = 0

• 𝑣(𝑁) is payoff of the game (think of profit)

• 𝑣(𝑆) is the worth of the coalition 𝑆

Game value

Map 𝑣 → h 𝑁, 𝑣 = (ℎ 𝑁, 𝑣 , ℎ 𝑁, 𝑣 , … , ℎ [𝑁, 𝑣])



Example 1:  Shapley value

𝜑 𝑣 = ∑
! !

!
𝑣 𝑆 − 𝑣 𝑆\{𝑖}⊂ ,  [Shapley, 1953]

• (LN) 𝜑 is linear: 𝜑 𝑣 + 𝑤 = 𝜑 𝑣 + 𝜑 𝑤

• (EF) 𝜑 is efficient: ∑ 𝜑 𝑣 = 𝑣(𝑁)

• (SM) 𝜑 is symmetric (abstract games)

⇒ (NP) null player property: null player 𝑖 ∈ 𝑁 of 𝑣  ⇒ 𝜑 𝑣 = 0.

remark: 𝜑 is a unique game value that satisfies (LN), (EF), (SM), [Shapley, 1953].



Example 1:  Shapley value

𝜑 𝑣 = ∑
! !

!
𝑣 𝑆 − 𝑣 𝑆\{𝑖}⊂ ,  [Shapley, 1953]

• (L) 𝜑 is linear: 𝜑 𝑣 + 𝑤 = 𝜑 𝑣 + 𝜑 𝑤

• (E) 𝜑 is efficient: ∑ 𝜑 𝑣 = 𝑣(𝑁)

• (S) 𝜑 is symmetric (abstract games)

⇒ (N) null player property: null player 𝑖 ∈ 𝑁 of 𝑣  ⇒ 𝜑 𝑣 = 0.

remark: 𝜑 is a unique game value that satisfies (L), (E), (S), [Shapley, 1953].

Example 2: Banzhaf value

𝐵𝑧 𝑣 = ∑ 𝑣 𝑆 − 𝑣 𝑆\{𝑖}⊂ ,  [Banzhaf, 1965]

• 𝐵𝑍 satisfies (L), (S), total power property.

remark: The Shapley value that assumes that every player is equally likely to join any coalition of the same size and that all 
coalitions of a given size are equally likely. The Banzhaf value assumes that every player is equally likely to enter any coalition.



ML games

Given (𝑋, 𝑓) and 𝑆 ⊂ 𝑁 = {1,2, … 𝑛}

• 𝑣 𝑆; 𝑥, 𝑓 =  𝔼[𝑓(𝑋 , 𝑋 )|𝑋 = 𝑥 ],  conditional game

• 𝑣 𝑆; 𝑥, 𝑓 = 𝔼 𝑓 𝑥 , 𝑋 , marginal game

• 𝜑 𝑣 ,  𝜑 𝑣 ∈ ℝ are conditional and marginal explanations, respectively

Interactions are handled better with Shapley values (application to the example in [Goldstein et al, 2015] )

marginal ShapleyPDP

Game theoretic approach for ML explainability has been explored in Štrumbelj & Kononenko (2014), Lundberg & Lee (2017)



ML games
Remarks: Some facts for 𝑣 ∈ {𝑣 , 𝑣 }

• 𝑣 , 𝑣 are not cooperative games because 𝑣 ∅ = 𝑣 ∅ = 𝔼[𝑓(𝑋)]

𝜑 = 𝔼 𝑓 𝑋  ⇒  𝜑 𝑣 𝑥; 𝑓 = 𝜑 𝑣 𝑥; 𝑓 = 𝑓 𝑥

• 𝑣 𝑆; 𝑋, 𝑓 , 𝑣 (𝑆; 𝑋, 𝑓) are random games where randomness comes from predictors.

• Random games are linear with respect to models. The maps

𝑓 → 𝜑 𝑣 𝑋; 𝑓 ,  𝑓 → 𝜑 𝑣 𝑋; 𝑓

are linear operators on appropriate domains [Miroshnikov et al 2021b].

• For additive models 𝑓 = ∑𝑓 (𝑋 )

𝜑 𝑣 𝑋; 𝑓 = 𝑓 𝑋 − 𝔼[𝑓 (𝑋)]

but in general PDPs and marginal Shapley value differ.



Example [Miroshnikov et al. 2021b]



ML Games

Question: What is the difference between marginal and conditional games?

Conditional game 

• 𝑣 explores the joint (𝑋, 𝑌)

• 𝜑[𝑣 ] are consistent with the data and 𝑓 𝑋

• Infeasible due to the curse of dimensionality [Hastie et al]. 

Marginal game

• 𝑣 explores the model 𝑓(𝑥)

• 𝜑[𝑣 ] are consistent with the model 𝑓(𝑥)

• Complexity 𝑂(2 )

𝑌 = 𝑋 𝑋 |  𝑋 = sin 𝜋𝑋 + 𝜖

Example from [Miroshnikov et al 2021b]



Game values with coalitional structure

Coalitional value 

Given a coalition structure 𝑁, 𝑣, 𝒫 where 𝒫 = {𝑆 , 𝑆 , 𝑆 , … , 𝑆 } the coalitional game is a map

𝑔 𝑁, 𝑣, 𝒫 ∈ ℝ

• Owen values [Owen, 1977]

• Banzhaf-Owen values [Owen, 1982]

• Two-step Shapley [Kamijo, 2009]

remark: Shapley value is a trivial coalitional value

In cooperative game theory with coalition structure, the objective is to compute the payoffs of players in a game where 
players form unions acting in agreement within the union: 𝒫 = {𝑆 , 𝑆 , 𝑆 , … , 𝑆 }, ∪ 𝑆 = {1,2, . . . , 𝑛}
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Coalitional values
Quotient game: 𝑣𝒫 𝐴 = 𝑣(∪ ∈ 𝑆 )

Useful properties for ML explainability

• (2SF) 2-step formulation

Coalitional value can be obtained playing a quotient-like 

game and then a game inside the union.

• (QP) Quotient game property

The sum of the payoffs of the players in a union equal to the 

payoff of the union in the quotient game.

𝒫 = {𝑆 , 𝑆 , 𝑆 }, 𝑁 = {1,2, … , 9}

Examples

• (EF) Shapley values

• (QP,2SF,EF) Owen values, Two-step Shapley

• (2SF) Banzhaf-Owen

• (QP,2SF) Symmetrical Banzhaf-Owen



Coalitional values

Use of coalitional values in ML explainability

• Forming partitions by business/scientific/independence reasons

• Reduction in complexity 𝑂 2 𝒫

• Generalization to partition trees and graphs [Wang et al. 2020]

• Fairness explainability [Miroshnikov et al. 2021a]

• Unifying marginal and conditional approaches [Aas et al. 2020, Miroshnikov et al. 2021b]

𝒫 = {𝑆 , 𝑆 , 𝑆 },  𝑁 = {1,2, … , 9}
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