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1. Introduction



Fair Lending
ML models and strategies that rely on ML models are subject to federal laws and regulations, 
including the Equal Credit Opportunity Act (ECOA), Fair Housing Act (FHA), and Equal Employment 
Opportunity Act (EEOA).

ECOA and FHA laws and regulations prohibit discrimination against protected classes (sub-
populations) in lending; thus, disparities against the sub-populations must be considered.

EEOA laws forbid discrimination against employees and job applicants on the bases of race, color, 
religion, sex, national origin, disability, or age.

Examples of protected attributes: race, gender, age, ethnicity, national origin, marital status, etc.



Explainability

ML risk models use historical, consumer and consumer reporting information to 
estimate the probability of default. US Federal regulations require lenders to provide 
applicants with the primary factors that contribute to an adverse action (i.e., decline).

Explainability methods. There are a variety of mathematical and statistical techniques 
that quantify the contribution of each element from the input vector to the predictive 
model output given the distribution of inputs. Game theoretic approaches are popular, 
as well as models that are inherently interpretable.



Notation

Distribution 𝑋, 𝐺, 𝑌

• 𝑋 = (𝑋ଵ, … , 𝑋௡) ∈ ℝ௡, predictors

• 𝐺 ∈ 0,1  (e.g. male/female)

• 𝑌 ∈ {0,1 = adverse action}, response variable

Models

• 𝑓 𝑋; 𝜃 = ℙ෡ 𝑌 = 1 𝑋 , a trained classification score, 𝜃 ∈ ℝ௠

• 𝑌௧
෡ = 1 ௙ ௑ வ௧  , a classifier for a given threshold 𝑡 ∈ [0,1]

Note: sometimes, we work with a raw probability score 𝑓 𝑋; 𝜃 : = 𝑙𝑜𝑔𝑖𝑡(ℙ෡ 𝑌 = 1 𝑋 ).



Local fairness metrics for classifiers
ML bias can be viewed as an ability to differentiate between subpopulations at the level of data or outcomes [Dwork et al 2012] 

 Statistical parity, 𝑌෠௧ ∈ {0,1} [Feldman et al, 2015] 

Bias௦௧ 𝑌෠௧ G = ℙ 𝑌௧
෡ = 0 𝐺 = 0 − ℙ 𝑌௧

෡ = 0 𝐺 = 1

 Equalized odds, 𝑌෠௧ ∈ {0,1} [Hardt et al, 2015] 

Bias௘௢ 𝑌෠௧ G = ℙ 𝑌෠ = 0 𝑌 = 𝑦, 𝐺 = 0 − ℙ 𝑌෠ = 0 𝑌 = 𝑦, 𝐺 = 1 , 𝑦 ∈ {0,1}

For generalizations, see [Miroshnikov-Kotsiopoulos-Ravi Kannan, ML Springer (2022)]



Performance-Fairness trade-off example

Statistical parity classifier bias

𝑏𝑖𝑎𝑠 𝑌௧|𝑋, 𝐺 = ℙ 𝑌௧ = 0 𝐺 = 0 − ℙ 𝑌௧ = 0 𝐺 = 1

Example (proxy predictor) 

• 𝑋 ~ 𝑁 5 − 𝐺, 5   ,  ℙ 𝐺 = 0 = ℙ 𝐺 = 1 = 0.5

• 𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑓(𝑋)), 𝑓(𝑥) = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 5 − 𝑥



Global fairness metrics
Issue
• Threshold 𝑡 in 𝑌෠௧ may not be known in advance; may be formulated in the form of an ML model.

 Wasserstein metric

Cost of transporting the distribution of the protected class into non-protected:

𝐵𝑖𝑎𝑠ௐభ
𝑓 𝑋, 𝐺 : = 𝑊ଵ 𝑓 𝑋 𝐺 = 0, 𝑓 𝑋 𝐺 = 1

= inf
గ∈𝒫 ℝమ

  ∫ 𝑧ଵ − 𝑧ଶ  𝜋(𝑑𝑧ଵ, 𝑑𝑧ଶ), 𝜋 with marginals 𝑃௙ ௑ |ீୀ௞, 𝑘 ∈ {0,1}  

= න 𝐹ଵ 𝑡 − 𝐹଴(𝑡)  
ଵ

଴

𝑑𝑡 = න 𝐵𝑖𝑎𝑠௦௧ 𝑌෠௧ 𝐺  𝑑𝑡
ଵ

଴
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ଵ

଴

𝑑𝑡 = න 𝐵𝑖𝑎𝑠௦௧ 𝑌෠௧ 𝐺  𝑑𝑡
ଵ

଴

 Generalizations: ∫ 𝐵𝑖𝑎𝑠 𝑌෠௧ 𝐺, Ω௟ ௟ୀଵ
௠ ⋅ 𝜇 𝑑𝑡; 𝐹௙|ீୀ௞,ஐ೗

ଵ

଴

[Miroshnikov-Kotsiopoulos-Ravi Kannan (2022), Becker et al (2024)]



2. Bias explanations



Individual feature attributions

(Local) Model explainer

Quantifies the contribution of an observation 𝑥 = 𝑥ଵ, 𝑥ଶ, … 𝑥௡ ∼ 𝑋 to the value 𝑓(𝑥). 

 ℝ௡ ∋ 𝑥 → 𝐸 𝑥; 𝑓, 𝑋, ℛ(𝑓) = 𝐸ଵ, 𝐸ଶ, … 𝐸௡ ∈ ℝ௡ .

Here the model 𝑓, the random vector 𝑋 and model implementation ℛ(𝑓) serve as parameters.



Game-theoretic approaches

• Game theoretic approaches have been explored 
in Štrumbelj & Kononenko (2014), Lundberg & Lee (2017)

• Cooperative game 𝑁, 𝑣

• set of players indexed by 𝑁 = 1,2, … , 𝑛

• utility 𝑣(𝑆), 𝑆 ⊆ 𝑁

• Game value

𝑁, 𝑣 → ℎ 𝑁, 𝑣 = ℎ௜ 𝑁, 𝑣 ௜ୀଵ
௡ ∈ ℝ௡

• Shapley value (Shapley, 1953) 

𝜑௜ 𝑣 = ∑
ୱ! ௡ି௦ିଵ !

௡!
𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ,ௌ⊆ே∖ ௜  𝑖 ∈ 𝑁.  

[from gametheory.online]



ML games and values

 We consider game values in the marginalist form

ℎ௜ 𝑁, 𝑣 = ∑ 𝑤 𝑆, |𝑁| ⋅ 𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆   ௌ⊆ே∖ ௜  

 ML games

• 𝑣஼ா 𝑆, 𝑥; 𝑋, 𝑓 =  𝔼 𝑓 𝑋ௌ, 𝑋ିௌ 𝑋ௌ = 𝑥௦ (conditional game)

• 𝑣ொ 𝑆, 𝑥; 𝑋, 𝑓 = 𝔼 𝑓 𝑥ௌ, 𝑋ିௌ (marginal game)

 Linearity

𝑓 → ℎ[𝑁, 𝑣 ⋅, 𝑥; 𝑋, 𝑓 ] is linear in models 𝑓. 



ML Fairness Explainability

A.M., K. Kotsiopoulos, R. Franks, A. Ravi Kannan, “Wasserstein-
based fairness interpretability framework for machine learning 
models, Machine Learning (Springer), 2022.

• Global metric 

Biasௐభ
𝑓 𝐺 = 𝑊ଵ 𝑃௙ ௑ |ீୀ଴, 𝑃௙ ௑ |ீୀଵ = න 𝑏𝑖𝑎𝑠௧

஼
ଵ

଴

𝑓 𝐺 𝑑𝑡 

• Marginal bias game
𝑣௕௜௔௦ 𝑆; 𝑓 = 𝐵𝑖𝑎𝑠ௐభ

𝑣ொ(𝑆; 𝑓, 𝑋) 𝑋, 𝐺

• Bias explanations
𝜑௜ 𝑣௕௜௔௦ 𝑆; 𝑓 , 𝑖 ∈ 𝑁 = {1,2, … 𝑁}



2. Bias mitigation



Public

Mitigation under regulatory constraints

Demographically blind models

 Use of 𝐺 during ML training is typically not allowed.

 Use of 𝐺 at inference time is not allowed, i.e. 𝑓 must explicitly depend on 𝑋 only.

 Threshold 𝑡 may be not known in advance. Global bias metrics must be used.

e.g. [Hardt et al (2015), Feldman et al (2015), Gordaliza et al (2019), Kwegyir-Aggrey et al (2023) ]

Use of 𝐺 in validation and mitigation (after ML training)

 Proxy for 𝐺 are used for bias measurement by the compliance office after ML training. 

 Bias mitigation for the trained ML model is performed by the compliance office.



Public

Problem setup
Given a parametrized family of models 𝒞 = 𝑓 𝑥; 𝜃 : 𝜃 ∈ ℝ௠ consider the minimization

(OP) 𝑓(𝑥; 𝜃∗(𝜔)) = argmin
௙∈𝒞

  𝔼 ℒ(𝑓(𝑋; 𝜃), 𝑌) + 𝜔 ⋅ ℬ 𝑓(⋅; 𝜃) X, 𝐺  

where 𝜔 ∈ 0, ∞ is a penalization parameter and ℬ(𝑓, 𝑋|𝐺) is a global fairness metric.
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(OP) 𝑓(𝑥; 𝜃∗(𝜔)) = argmin
௙∈𝒞

  𝔼 ℒ(𝑓(𝑋; 𝜃), 𝑌) + 𝜔 ⋅ ℬ 𝑓(⋅; 𝜃) X, 𝐺  

where 𝜔 ∈ 0, ∞ is a penalization parameter and ℬ(𝑓, 𝑋|𝐺) is a global fairness metric.

• Bias metrics of interest: [Jiang et al 2020, Vogel et al 2022, Becker et al 2024, Franks-Miroshnikov 2025]

• 𝐵𝑖𝑎𝑠ௐభ
𝑓 𝑋, 𝐺 ≔ ∫ 𝐹௙|ீୀ଴

ିଵ
𝑞 − 𝐹௙|ீୀଵ

ିଵ
𝑞 𝑑𝑞, 𝑝 ≥ 1

• 𝐵𝑖𝑎𝑠ௐభ, ఓ 𝑓 𝑋, 𝐺 : = ∫ 𝐹௙|ீୀ଴ 𝑡 − 𝐹௙|ீୀଵ 𝑡
ଵ

଴
𝜇 𝑑𝑡

• 𝐵𝑖𝑎𝑠ఓ
(௖)

𝑓 𝑋, 𝐺 : = ∫ 𝑐 𝐹௙|ீୀ଴ 𝑡 , 𝐹௙|ீୀଵ 𝑡
ଵ

଴
𝜇 𝑑𝑡 ,  𝑐𝑜𝑠𝑡 = 𝑐 ⋅,⋅ ≥ 0

• Note: care must be taken to to compute  ∇ఏ 𝐵𝑖𝑎𝑠 𝑓 ⋅; 𝜃  𝑋, 𝐺)



Public

Optimization approaches

 (A1) Optimization during ML training. 𝒞 is the family of ML models where 𝜃 is ML parameter. 

[Jiang et al 2020, Vogel et al 2022].

 (A2) 𝒞 is the family of ML models where 𝜃 is a hyper parameter. [Perrone 2021]

 (A3) Optimize after ML training 𝑓∗. Then 𝒞 = 𝒞(𝑓∗) is the family of postprocessed models.

[Miroshnikov-Kotsiopoulos-Franks-Ravi Kannan (2021)], [ US Patent 12002258 B2 (2024) ]

[Franks-Miroshnikov arXiv:2504.01223 (2025)]

Notes

• (A1)-(A2) can be computationally costly,  (A1) may not be feasible (e.g. tree-based models).

• (A3) 𝒞(𝑓∗) has to be carefully formulated not to impact performance and 𝑓(𝑥; 𝜃) must be explainable.



Public

Choice of a family

Setup: Given a family of models 𝒞 = 𝑓 𝑥; 𝜃 : 𝜃 ∈ ℝ௠ consider the minimization problem

(OP)                  𝑓(ఠ) = 𝑎𝑟𝑔𝑚𝑖𝑛𝒞  𝔼 ℒ(𝑓(𝑋; 𝜃), 𝑌) + 𝜔 ⋅ ℬ(𝑓, 𝑋|𝐺) , 𝜔 ∈ 0, ∞ ,

where 𝜔 is a penalization parameter and ℬ(𝑓, 𝑋|𝐺) is a global fairness metric (e.g. 𝑊ଵ).

Approaches

(A1) Optimize during ML training: 𝒞 is the family of models, e.g. [Vogel et al 2022].

(A2) Optimize after ML training 𝑓∗. Then 𝒞 = 𝒞(𝑓∗) is the family of postprocessed models.

Practical challenges

• (A1) is computationally costly and maybe difficult for some classes 𝒞 of ML models (e.g. tree-based models)

• (A2) 𝒞(𝑓∗) has to be carefully formulated not to impact performance too much.

• 𝑓(ఠ) must be explainable.



3. Post processing



Public

Postprocessing family 1 (perturbing input)
 Given a trained ML model 𝑓∗ 𝑥 , define a scaling family about 𝑓∗

𝒞 𝑓∗ = 𝑓 𝑥, 𝜃 : 𝑇଴ ∘ 𝑓∗ 𝑇ଵ 𝑥ଵ , 𝑇ଶ 𝑥ଶ , … , 𝑇௡ 𝑥௡

where 𝑇௜ 𝑡 = 𝜃௜
(ଵ)

⋅ 𝑡 + 𝜃௜
(ଶ)

 or some variations of that.

[Miroshnikov-Kotsiopoulos-Franks-Ravi Kannan (2021) & US Patent 12002258 B2 (2024)]

 Use Bayesian optimization or SGD to solve (OP) over 𝒞 to get the Pareto frontier.

Issues 
• Bayesian optimization is slow in high dimensions.
• SGD is not always appropriate.

 To reduce dimension, determine features most contributing to bias:

• Game 𝑣௕௜௔௦ 𝑆; 𝑓 = 𝐵𝑖𝑎𝑠ௐభ
𝑣ொ(𝑆; 𝑓, 𝑋) 𝑋, 𝐺 , 𝑆 ⊆ 𝑁.

• Shapley values 𝜑௜ 𝑣௕௜௔௦ 𝑆; 𝑓 , 𝑖 ∈ 𝑁. 

• Set 𝑇௜ 𝑡 = 𝑡 for non-contributing 𝑖 ∈ 𝑁.

[Miroshnikov-Kotsiopoulos-Franks-Ravi Kannan, ML Springer (2022)]



Public

Postprocessing family 2 (perturbing input)

[Miroshnikov-Kotsiopoulos-Ravi Kannan-Dickerson-Franks US 20220414766 Patent Application]
& [Franks-Miroshnikov arXiv:2504.01223 (2025)]

 Given a trained model 𝑓∗, define 

𝒞 𝑓∗ =  𝑓 𝑥, 𝜃 :  𝑓 𝑥, 𝜃 = 𝑓∗ 𝑥 − ∑ 𝜃௝ ⋅ 𝑤௝ 𝑥; 𝑓∗, 𝑋௠
௝ୀ଴ , 𝜃 ∈ Θ ⊆ ℝ௠ାଵ  

where 𝑤௝ 𝑥; 𝑓∗, 𝑋 are weight functions (or encoders) that depend on 𝑓∗ and 𝑋, with 𝑤଴ ≡ 1.
.

 Encoders 𝑤(𝑓∗, 𝑋):
• Features or additive models of features (e.g., biased features 𝑋௜).
• Explanations (e.g., marginal Shapley values 𝜑ொ(𝑥; 𝑓∗, 𝑋)).
• Model representation components (i.e., trees or their linear combinations when 𝑓∗ is a tree ensemble).

 Properties
• The problem is linear in 𝑤.
• If 𝑓∗ and 𝑤௝ are explainable, then 𝑓(ఠ) is explainable (assuming the explanation map is linear).



Public

Public dataset
• Adult dataset (12 variables, 𝐺 = 𝐺𝑒𝑛𝑑𝑒𝑟, 48842 samples)
• Bank dataset (19 variables, 𝐺 = 𝐴𝑔𝑒, 41188 samples)

[Franks-Miroshnikov arXiv:2504.01223 (2025)]


