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Introduction n

• Predictive ML models, and strategies that rely on such models, are subject to laws and regulations that 

ensure fairness (e.g. ECOA, EEOA).

• Examples of protected attributes: race, gender, age, ethnicity, national origin, marital status, etc.

• Tradeoff between accuracy and bias

Main steps in ML fairness

1. Fairness assessment (or bias measurement)

2. Bias mitigation



Fairness for classifier
Notation

Data 𝑋, 𝐺, 𝑌

• 𝑋 ∈ ℝ , predictors

• 𝐺 ∈ 0,1  (e.g. male/female)

• 𝑌 ∈ {0,1}, response variable

Models

• 𝑓 𝑋 = ℙ 𝑌 = 1 𝑋 , trained classification score

• 𝑌 = 1  , a classifier for a given threshold 𝑡 ∈ ℝ

• 𝑌, a classifier

Labels

• Non-protected class: 𝐺 = 0

• Favorable outcome: 𝑌 = 0  



Fairness for classifier

• ML bias can be viewed as an ability to differentiate between subpopulations at the level of data or outcomes
(Dwork et al 2012) 

Statistical parity (Feldman et al, 2015) 

ℙ 𝑌 = 0 𝐺 = 0 = ℙ 𝑌 = 0 𝐺 = 1

Equalized odds (Hardt et al, 2015) 

ℙ 𝑌 = 0 𝑌 = 𝑦, 𝐺 = 0 = ℙ 𝑌 = 0 𝑌 = 𝑦, 𝐺 = 1 , 𝑦 ∈ {0,1}

Equal opportunity (Hardt et al, 2015) 

ℙ 𝑌 = 0 𝑌 = 0, 𝐺 = 0 = ℙ 𝑌 = 0 𝑌 = 0, 𝐺 = 1

Geometric parity for 𝑌
∗
 (Miroshnikov et al, 2021a) 

𝐹 (𝑝∗) = 𝐹 (𝑝∗),   𝑝∗ = 𝐹 𝑡∗ = ℙ(𝑓 𝑋 ≤ 𝑡∗|𝑌 = 0)



Fairness in classifiers

Statistical parity classifier bias

𝑏𝑖𝑎𝑠 𝑌 |𝑋, 𝐺 = ℙ 𝑌 = 0 𝐺 = 0 − ℙ 𝑌 = 0 𝐺 = 1

Example (proxy predictor) 

• 𝑋 ~ 𝑁 5 − 𝐺, 5   ,  ℙ 𝐺 = 0 = ℙ 𝐺 = 1 = 0.5

• 𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑓(𝑋)), 𝑓(𝑥) = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 5 − 𝑥



Fairness in classifiers

Approaches for bias mitigation

• Maximization with fairness constraints 

𝑌∗ 𝑋, 𝐺  𝑜𝑟 𝑌∗ 𝑋 = max
( ∗| )

ℒ 𝑌∗, 𝑋  ,  or  mini-max approach

Dwork et al (2012), Woodworth et al (2017),  Zhang et al (2018), and many others.

• Post-corrective methods (Hardt et al, 2015)

• Study of equalized odds, equal opportunity, statistical parity

• Construction of  fair randomized classifier 𝑌 𝑋, 𝐺; 𝑓 ∈ 𝒫({0,1}) via post-processing



Fairness in classifiers

Approaches for bias mitigation

Fair dataset construction. Feldman et al (2015), Gordaliza et al. (2019)

Construction of partially fair 𝑋 = 𝑋(𝑋, 𝐺; 𝜆) using optimal transport, 𝜆 ∈ 0,1

o Training a classifier on 𝑋

o Fairer predictors imply fairer classifier

o Useful when 𝑌 is not available

Classifier bias bounds:

𝑏𝑖𝑎𝑠 𝑔(𝑋) 𝐺 ≤ 𝑑 (𝑃 | , 𝑃 | )

For random repair Gordaliza et al. able to control 𝑃 | , 𝑃 |

• Pareto efficient frontier. Schmidt and Stephens (2019), Perrone et al (2020).

o Trained models ℱ = 𝑓 : 𝜃 ∈ Θ

o Construction of the frontier over ℱ



Motivation

Issues

• Typical bias measurements test fairness of a classifier 𝑌 , not the regressor 𝑓(𝑋)

• Mitigation procedures often focus on the construction of a fair classifier 𝑌∗(𝑋, 𝐺), not a fair model 𝑓∗ 𝑋, 𝐺

• Fair ML hyperparameter search might be computationally expensive due to retraining

Regulatory constraints

• Explicit use of the protected attribute 𝐺 is not allowed by ECOA neither in training nor prediction:

o Training with fairness constrains  or repairing predictors and then training is not allowed

o Postprocessing models in the form 𝑓(𝑋, 𝐺) are not allowed

o Using information on 𝑋, 𝐺 , for instance ℙ(𝐺|𝑋), in prediction, is not allowed



Motivation

Stages of model development

1. Model training with access to 𝑋

2. Fairness assessment on (𝑋, 𝐺) and (appropriate) post-processing

3. Prediction with access to 𝑋

Note: Post-processed model must depend on 𝑋 and should not allow one to learn (𝑋, 𝐺), including ℙ(𝐺|𝑋).

Acceptable form of bias mitigation under regulatory settings

1. Given the regressor 𝑓 assess the bias across subpopulation distribution of 𝑓 𝑋 |𝐺 = 𝑘, 𝑘 ∈ 0,1

2. Determine the main drivers for the bias 𝑋 , 𝑀 = 𝑖 , 𝑖 , … , 𝑖

3. Construct a post-processed model 𝑓(𝑋; 𝑓, 𝑋 ) that does not rely on 𝐺 and does not leak information on (𝑋, 𝐺)



Model bias metrics

Bias metrics requirements:

1. Must keep track of the geometry of the model distribution 𝑃 (values control) 

2. Must be consistent with a wide class of classifier fairness criteria

3. Must track of the sign of the bias across subpopulations

4. Must be meaningful (interpretable)

Model bias metrics for regressors

At an algorithmic level, the bias can be viewed as an ability to differentiate between two subpopulations
at the level of data or outcomes. 

• An ability to differentiate vs independence:



Model bias metrics

Potential candidates

𝜇 , 𝜇 probability measures on a metric space 𝒵 equipped with a metric 𝑑(𝑧 , 𝑧 ).

• Randomized binary classifier (RBC) based  bias [Dwork et al (2012)] 

𝑀 : 𝒵 → 𝒫({0,1}), randomized classifier.

𝐵𝑖𝑎𝑠 , 𝜇 , 𝜇 = sup
∈ (𝒵, , )

  𝔼 ∼ 𝑀 (0) − 𝔼 ∼ 𝑀 0   

• Wasserstein metric 𝑊 (optimal transport cost of 𝜇  to 𝜇 and vice verse)

 𝑊 𝜇 , 𝜇 ; 𝑑 = inf
∈𝒫(𝒵 )

  𝔼 , ∼  𝑑 𝑧 , 𝑧 , transport plan  𝜋 with marginals 𝜇 , 𝜇  

• In our application 𝜇 , 𝜇 are 𝑃 | , 𝑘 = 0,1.

Remark: 𝑊 scales under linear transformations of 𝜇 𝑑 = ‖ ⋅ ‖ , but 𝐵𝑖𝑎𝑠 , ∈ [0,1] saturates.



Model bias metrics
Facts:

• (Dwork et al 2012): if 𝜇 , 𝜇 have discrete supports and 𝑑 ≤ 1

𝐵𝑖𝑎𝑠 , 𝜇 , 𝜇 = 𝑊 𝜇 , 𝜇 ; 𝑑

• (Miroshnikov et al 2021a): for any 𝜇 , 𝜇 with support in 𝐵 (𝑧∗) and 𝑑 z , z = ‖𝑧 − 𝑧 ‖

𝐵𝑖𝑎𝑠 , 𝜇 , 𝜇 = 𝑊 𝜇 ∘ 𝑇 , 𝜇 ∘ 𝑇 ; 𝑑 , 𝑇,  affine transformation

• 𝜇 , 𝜇 on ℬ(ℝ), with 𝑑 𝑧 , 𝑧 = 𝑧 − 𝑧 , there exists order preserving optimal transport plan 𝜋∗

W 𝜇 , 𝜇 = ∫ |𝑥 − 𝑥 | 𝑑𝜋∗ = ∫ 𝐹 𝑝 − 𝐹  𝑝 𝑑𝑝 = Shorack, 1956 = ∫ 𝐹 𝑡 − 𝐹 (𝑡) 𝑑𝑡



Model bias metrics

Model bias definition

Given predictors 𝑋, model 𝑓, and 𝐺 ∈ {0,1}

𝐵𝑖𝑎𝑠 𝑓 𝑋, 𝐺 = 𝑊 𝑓 𝑋 𝐺 = 0, 𝑓 𝑋 𝐺 = 1  

Facts [Miroshnikov et al, 2021a]

• Connection with statistical parity:

𝐵𝑖𝑎𝑠 𝑓 𝑋, 𝐺 = ∫ 𝑏𝑖𝑎𝑠 𝑌 𝑋, 𝐺 𝑑𝑡 ≤ 𝑓 𝑊 𝑋 𝐺 = 0, 𝑋 𝐺 = 1

• Connection with generic parity: 𝒜 = {𝐴 , … , 𝐴 },  ℙ 𝑌 = 1 𝐺 = 0, 𝐴 = ℙ(𝑌 = 1|𝐺 = 1, 𝐴 ), 𝐴 ∈ 𝒜

𝐵𝑖𝑎𝑠 ,𝒜 𝑓 𝑋, 𝐺 = ∑𝑤 𝑊 (𝑓 𝑋 𝐺 = 0, 𝐴 , 𝑓 𝑋 𝐺 = 1, 𝐴 ) = ∫ 𝑏𝑖𝑎𝑠𝒜 𝑌 𝑋, 𝐺 𝑑𝑡



Model bias metrics

Assumption

Model 𝑓 𝑋 ∈ ℝ has a favorable direction (for a risk score the direction is ←) 

Definition

Positive/negative model bias 𝐵𝑖𝑎𝑠± (𝑓|𝑋, 𝐺) is the transport effort (under 𝜋∗) of P | in favorable/non-favorable directions

Example

𝑋 ∼ 𝒩 𝜇, 1 + 𝐺 𝜇

𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑓 𝑋

𝑓 𝑋 = 𝜎 𝜇 − 𝑋

𝜁 = −1



Fairness interpretability objectives

Objective

• Determine the main drivers for the model biases ±

Main idea 

• Combine ML interpretability methods and transport approach



ML Interpretability

Post-hoc explainers (examples)

• { } ,  marginal expectation (ME), [PDP, Freidman, 2001]

• ,  conditional expectation (CE)

Having a complex model structure comes at the expense of interpretability.

Interpretability approaches

• Self-explainable models

• Post-hoc explanations



ML Interpretability

Post-hoc explainers (game-theoretical)

• Players: 𝑁 = {1,2, … , 𝑛} (features become player)

• Game: set function 𝑣 𝑆 , 𝑆 ⊂ 𝑁,  𝑣 𝑁 = total payoff

• Shapley value [Shapley, 1953]

𝜑 𝑣 = ∑
! !

!
𝑣 𝑆 − 𝑣 𝑆\{𝑖}  , 𝑖 ∈ 𝑁  ⊂

𝜑 is efficient:  ∑ 𝜑 𝑣 = 𝑣(𝑁),  linear,  symmetric.

Probabilistic games 

• 𝑣 𝑆; 𝑋, 𝑓 =  𝔼[𝑓(𝑋 , 𝑋 )|𝑋 ],  conditional game explores model predictions

• 𝑣 𝑆; 𝑋, 𝑓 = 𝔼 𝑓 𝑥 , 𝑋 | ,  marginal game explores the model



Fairness Interpretability

Definition (basic bias explanations)

• Given an explainer 𝐸 𝑋; 𝑓 of predictor 𝑋 , the bias explanation is defined via the transport cost

𝛽 𝑓 𝑋, 𝐺 = 𝑊 𝐸 (𝑋) 𝐺 = 0, 𝐸 (𝑋) 𝐺 = 1

• Positive and negative bias explanations 𝛽± are defined as transport effort in favorable and non-favorable 

directions.

Notes

• Type of ML explainers matters (marginal vs conditional)

• Some ML explainers isolate the effect of each predictor and some not (local vs global)



Fairness Interpretability

Example: bias explanations based on marginal Shapley values

𝜇 = 5, 𝑎 = 10, −4,16,1, −3

𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 0.5 + 𝐺  
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1  
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1 − 0.5𝐺
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1 − 0.75𝐺

𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑓 𝑋 , 𝑓 𝑋 = 𝜎 ∑𝑋 − 24.5



Fairness Interpretability

Example (offsetting)

𝑋 ∼ 𝒩 𝜇, 1 + 𝐺 , 𝑋 ∼ 𝒩(𝜇, 1 + 𝐺)
𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑓 𝑋 ), 𝑓 𝑋 = 𝜎(2𝜇 − 𝑋 − 𝑋 )

Notes
• Bias explanations are the same
• Bias predictor interactions

𝑋 ∼ 𝒩 𝜇, 2 − 𝐺 , 𝑋 ∼ 𝒩(𝜇, 1 + 𝐺)
𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑓 𝑋 ), 𝑓 𝑋 = 𝜎(2𝜇 − 𝑋 − 𝑋 )



Fairness Interpretability

• Basic bias explanations are not additive

• Cannot handle bias interactions when mixed bias predictors are present or predictors interact

• No tracking of how mass is transported



Fairness Interpretability

• Basic bias explanations are not additive

• Cannot handle bias interactions when mixed bias predictors are present or predictors interact

• No tracking of how mass is transported

Game theoretical approach

• Consider an ML explainer 𝐸 (𝑋; 𝑓) of predictor 𝑋 , 𝑆 ⊂ {1,2, … 𝑛}

• Predictors 𝑋 ∈  are players that push/pull explainer subpopulation distributions apart when joining a coalition 𝑆 ⊂ 𝑁 

• A game 𝑣 𝑆 = 𝐵𝑖𝑎𝑠 𝐸 𝑋 𝐺 = 𝑊 𝐸 (𝑋) 𝐺 = 0, 𝐸 (𝑋) 𝐺 = 1

• A game 𝑣 ± 𝑆 = 𝐵𝑖𝑎𝑠± (𝐸 (𝑋)|𝐺) 

• Shapley bias explanations 𝜑 𝑓 𝑋, 𝐺 = 𝜑[𝑣 ],   𝜑 ± 𝑓 𝑋, 𝐺 = 𝜑[𝑣 ±]

𝐵𝑖𝑎𝑠± 𝑓 𝑋, 𝐺 =  𝜑 ± 𝑓 𝑋, 𝐺



Fairness Interpretability

Example (marginal Shapley-bias explanations)

𝜇 = 5, 𝑎 = 10, −4,16,1, −3

𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 0.5 + 𝐺  
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1  
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1 − 0.5𝐺
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1 − 0.75𝐺

𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑓 𝑋 , 𝑓 𝑋 = 𝜎 ∑𝑋 − 24.5

𝜑[𝑣 ±(⋅, 𝜑[𝑣 ])] 𝜑[𝑣 (⋅, 𝜑[𝑣 ])]



Application

Superposition [Miroshnikov et al, 2021c]

Set 

�̅� = max 𝜑 𝑣 , 0 ,    �̅� = max (−𝜑 𝑣 , 0)

�̅� = max (𝜑 𝑣 , 0),    �̅� = max (−𝜑 𝑣 , 0)

Then
𝐵𝑖𝑎𝑠 𝑓 𝑋, 𝐺 = ∑�̅� + ∑�̅� − ∑�̅� − ∑�̅� ≥ 0

Special case

Let 𝑓 be positively-biased model, that is, 𝐵𝑖𝑎𝑠 𝑓 𝑋, 𝐺 > 0, 𝐵𝑖𝑎𝑠 𝑓 𝑋, 𝐺 = 0. Then

𝐵𝑖𝑎𝑠 𝑓 𝑋, 𝐺 = ∑�̅� − ∑�̅�

where �̅� = �̅� + �̅� , �̅� = �̅� + �̅� (positive and negative Shapley-bias explanations)

Note: for non-additive bias explanations the above relationship is true provided 𝑓 = ∑ 𝑓



Application

Effect of compression:

• Compressing 𝑋 , 𝑋  via a compressive map 𝑇(𝑥 ; 𝑥∗)

• Set 𝑓 = 𝑓 𝑇(𝑋 ; 𝑥∗), 𝑋 , 𝑇(𝑋 ; 𝑥∗), 𝑋 , 𝑋 , 𝑥∗ = 𝔼[𝑋 ]

Example

𝜇 = 5, 𝑎 = 10, −4,16,1, −3

𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 0.5 + 𝐺  
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1  
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1 − 0.5𝐺
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1 − 0.75𝐺

𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑓 𝑋 , 𝑓 𝑋 = 𝜎 2 ∑𝑋 − 24.5



Application

Efficient frontier via rebalancing [Miroshnikov et al 2021c]

• ℱ = 𝑓: 𝑓 = 𝒞 𝑓 𝑇 𝑋 ; 𝛼 , 𝑋 , 𝛼 ∈ 𝐴 ⊂ ℝ

• 𝑇 ⋅; 𝛼 adjusts each predictor appropriately

• 𝒞[⋅] calibrates the distribution 

• Efficient frontier is recovered by solving:

𝛼∗ 𝜔 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝔼 𝐿 𝑌, 𝑓 + 𝜔𝐵𝑖𝑎𝑠 (𝑓|𝑋, 𝐺)

Strategies for choosing 𝑀

1. Given 𝑚∗: 𝑁± = {𝑖: 𝑚∗-highest 𝛽±}. Set 𝑀 = 𝑁 ∪ 𝑁 .

2. Given 𝑚∗: 𝑀 = {𝑖: 𝑚∗-highest 𝛽 }. Set 𝑀 = 𝑁 ∪ 𝑁 .



On stability of bias explanations

• Conditional bias explanations are consistent with the data; computational complexity might be infeasible under dependencies in 𝑋.

• Marginal bias explanations are consistent with the structure of the model 𝑓(𝑥), complexity 𝑂(2 )

Lemma (stability [Miroshnikov et al 2021a])

The conditional and marginal Shapley-bias explanations have the following properties:

i. | 𝜑 ± 𝑓 𝐺, 𝜑 𝑣 − 𝜑 ± 𝑓 𝑔, 𝜑 𝑣  | ≤ 𝐶 𝑓 − 𝑔

ii. |𝜑 ± 𝑓 𝐺, 𝜑 𝑣 − 𝜑 ± 𝑓 𝑔, 𝜑 𝑣 | ≤ 𝐶 𝑓 − 𝑔 ( ), 𝑃 = ∑ 𝑃 ⊗ 𝑃⊂



On stability of bias explanations

• Conditional bias explanations are consistent with the data; computational complexity might be infeasible under dependencies in 𝑋

• Marginal bias explanations are consistent with the structure of the model 𝑓(𝑥), complexity 𝑂(2 )

Lemma (stability [Miroshnikov et al 2021a])

The conditional and marginal Shapley-bias explanations have the following properties:

i. |𝜑 ± 𝑓 𝐺, 𝜑 𝑣 − 𝜑 ± 𝑓 𝑔, 𝜑 𝑣 | ≤ 𝐶 𝑓 − 𝑔

ii. |𝜑 ± 𝑓 𝐺, 𝜑 𝑣 − 𝜑 ± 𝑓 𝑔, 𝜑 𝑣 | ≤ 𝐶 𝑓 − 𝑔 ( ), 𝑃 = ∑ 𝑃 ⊗ 𝑃⊂

Notes (Miroshnikov et al, 2021b, arXiv:2102.10878) : 
• For marginal Shapley-bias explanations continuity in 𝐿 (𝑃 ) in general breaks down under dependencies in 𝑋
• Marginal and conditional points of view can be unified via grouping and stability in 𝐿 (𝑃 ) is guaranteed
• Complexity can be reduced via quotient games and recursive approach
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