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Introduction n

• Predictive ML models, and strategies that rely on such models, are subject to laws and regulations that 

ensure fairness (e.g. ECOA, EEOA).

• Examples of protected attributes: race, gender, age, ethnicity, national origin, marital status, etc.

• Tradeoff between accuracy and bias.

Main steps in ML fairness

1. Fairness assessment (or bias measurement).

2. Bias mitigation.



Setup

Data 𝑋, 𝐺, 𝑌

• 𝑋 ∈ ℝ , predictors

• 𝐺 ∈ 0,1  (e.g. male/female)

• 𝑌 ∈ {0,1} or 𝑌 ∈ ℝ, response variable

Models

• 𝑓 𝑋 = ℙ 𝑌 = 1 𝑋 or 𝔼 𝑌 𝑋 trained classification score

• 𝑌 = 1  , a classifier for a given threshold 𝑡 ∈ ℝ

• 𝑌, a classifier

Labels

• Non-protected class: 𝐺 = 0

• Favorable outcome: 𝑌 = 0  



Classifier fairness

• ML bias can be viewed as an ability to differentiate between subpopulations at the level of data or outcomes
(Dwork et al 2012) 

• Statistical parity (Feldman et al, 2015) 

ℙ 𝑌 = 0 𝐺 = 0 = ℙ 𝑌 = 0 𝐺 = 1

• Equalized odds (Hardt et al, 2015) 

ℙ 𝑌 = 0 𝑌 = 𝑦, 𝐺 = 0 = ℙ 𝑌 = 0 𝑌 = 𝑦, 𝐺 = 1 , 𝑦 ∈ {0,1}

• Equal opportunity (Hardt et al, 2015) 

ℙ 𝑌 = 0 𝑌 = 0, 𝐺 = 0 = ℙ 𝑌 = 0 𝑌 = 0, 𝐺 = 1



Classifiers fairness

Statistical parity classifier bias

𝑏𝑖𝑎𝑠 𝑌 |𝑋, 𝐺 = ℙ 𝑌 = 0 𝐺 = 0 − ℙ 𝑌 = 0 𝐺 = 1

Example (proxy predictor) 

• 𝑋 ~ 𝑁 5 − 𝐺, 5   ,  ℙ 𝐺 = 0 = ℙ 𝐺 = 1 = 0.5

• 𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑓(𝑋)), 𝑓(𝑥) = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 5 − 𝑥



Fairness with awareness

Selected approaches for bias reduction in classifiers with access to protected attributes

• Maximization with fairness constraints 

𝑌∗ 𝑋, 𝐺   𝑜𝑟  𝑌∗ 𝑋 = max
( ∗| )

𝔼 ℒ 𝑌∗, 𝑋

Dwork et al (2012), Woodworth et al (2017),  Zhang et al (2018), and many others.

• Post-corrective methods (Hardt et al, 2015)

• Study of equalized odds, equal opportunity, statistical parity 

• Construction of  fair randomized classifier 𝑌 𝑋, 𝐺; 𝑓 ∈ 𝒫({0,1}) via post-processing

• Dataset repairment via optimal transport. Feldman et al (2015), Gordaliza et al. (2019).



Fairness with awareness

Fair dataset construction. Feldman et al (2015)

• Geometric repair: 𝑋 |𝐺 = 𝑘 moving towards Wasserstein barycenter 𝑋 .

• Training a classifier on repaired dataset 𝑋 𝑋, 𝐺, 𝜆 ,  𝜆 ∈ 0,1

• Fairer predictors imply fairer classifier

• Useful when 𝑌 is not available

Random repair. Gordaliza et al (2019)

• Controlling the statistical parity bias via geometric repair is difficult

• Control must be via TV-distance:

𝑏𝑖𝑎𝑠 𝑌 𝑋, 𝐺 ≤ 𝑑 (𝑃 | , 𝑃 | )

• Random repair picks at random, 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜆 , between samples of 𝑃 | and the barycenter of subpopulations:

𝑏𝑖𝑎𝑠 𝑌 𝑋 , 𝐺 ≤ 𝑑 𝑃 | , 𝑃 | = 1 − 𝜆



Motivation

Comments

• Bias measurements test fairness of predictors 𝑋 or a classifier 𝑌, not the regressor 𝑓 𝑋

• Mitigation procedures focus on the construction of fair classifiers 𝑌∗(𝑋, 𝐺), not a fair regressor.

Regulatory constraints. Fairness without awareness.

• 𝐺 is typically not collected.

• Training with access to 𝐺 is not allowed.

• Models  (including post-processed ones) 𝑓(𝑋, 𝐺) that require access to 𝐺 are not allowed.

Proxy models of 𝐺 for validation

• Certain proxy models 𝐺 for 𝐺 are allowed for validation by compliance office. 𝐺 is prohibited to share outside of it.

• Postprocessing is possible by compliance but the model 𝑓(𝑋) must rely on 𝑋 only. No leakage of (𝑋, 𝐺) is allowed.



Objectives of our work

Given a trained model regressor or classification score 𝑓(𝑋):

1. Measurement. Evaluate regressor bias.  

2. Bias Interpretability. Quantify the contribution of each predictor to that bias.

3. Mitigation. Produce family of post-processed models 𝑓 (𝑋; 𝑓) using a proxy model 𝐺. 



Regressor bias

Model (regressor) bias

𝐵𝑖𝑎𝑠 𝑓 𝑋, 𝐺 = 𝑊 𝑓 𝑋 𝐺 = 0, 𝑓 𝑋 𝐺 = 1  

• Wasserstein metric 𝑊 (optimal transport cost)

𝑊 (𝜇 , 𝜇 ) = inf
∈𝒫(𝒵 )

∫ 𝑧 − 𝑧  𝜋(𝑑𝑧 , 𝑑𝑧 ), 𝜋 with marginals 𝜇 , 𝜇   

• 𝜇 = 𝑃 | , k ∈ {0,1}

Note: The main focus is on the bias in the output (model), not the input (predictors).



Model bias metrics

Basic properties (one-dimension)

• 𝜇 , 𝜇 on ℬ(ℝ), there exists order preserving optimal transport plan 𝜋∗ such that

W 𝜇 , 𝜇 = ∫ |𝑥 − 𝑥 | 𝑑𝜋∗ = ∫ 𝐹 𝑝 − 𝐹  𝑝 𝑑𝑝 = ∫ 𝐹 𝑡 − 𝐹 (𝑡) 𝑑𝑡

• Transport map vs transport plan:



Positive and negative flows

Need to understand whether the model favors majority class or minority one.

Assumption:  Model 𝑓 𝑋 ∈ ℝ has a favorable direction 𝜍 = ±1. 

Definition: 𝐵𝑖𝑎𝑠± (𝑓|𝑋, 𝐺) is the cost of transporting P | in favorable/non-favorable directions.

Example:

𝑋 ∼ 𝒩 𝜇, 1 + 𝐺 𝜇

𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑓 𝑋

𝑓 𝑋 = 𝜎 𝜇 − 𝑋

𝜁 = −1



Model bias metrics

Facts [Miroshnikov et al, 2021a]

• Integrated statistical parity bias:

o 𝐵𝑖𝑎𝑠 𝑓 𝑋, 𝐺 = ∫ 𝑏𝑖𝑎𝑠 𝑌 𝑋, 𝐺 𝑑𝑡

o 𝐵𝑖𝑎𝑠± 𝑓 𝑋, 𝐺 = ∫ 𝑏𝑖𝑎𝑠 𝑌 𝑋, 𝐺  𝑑𝑡
𝒯±

• Integrated generic parity bias: 𝒜 = {𝐴 , … , 𝐴 },  ℙ 𝑌 = 1 𝐺 = 0, 𝐴 = ℙ(𝑌 = 1|𝐺 = 1, 𝐴 ), 𝐴 ∈ 𝒜

𝐵𝑖𝑎𝑠 ,𝒜 𝑓 𝑋, 𝐺 = ∑𝑤 𝑊 (𝑓 𝑋 𝐺 = 0, 𝐴 , 𝑓 𝑋 𝐺 = 1, 𝐴 ) = ∫ 𝑏𝑖𝑎𝑠𝒜 𝑌 𝑋, 𝐺 𝑑𝑡



Input-output bias relationship

• Bias in predictors propagates through the model:

𝐵𝑖𝑎𝑠 𝑓 𝑋, 𝐺 ≤  𝑓 𝑊 𝑋 𝐺 = 0, 𝑋 𝐺 = 1

• Fairness of predictors is sufficient for model fairness, but not necessary:

𝑋 ∼ 𝑁 𝜏 ⋅ 𝐺, 1 , 𝑋 ∼ 𝑁 1,1 ,   𝑌 = 𝑋 + 𝑋

Here 𝐵𝑖𝑎𝑠 𝑌 𝑋, 𝐺 → 0 and  𝐵𝑖𝑎𝑠 𝑋 𝐺 → ∞ as  𝜏 → ∞.

• We would like to understand how each predictor contributes to the model bias 𝐵𝑖𝑎𝑠 𝑓 𝑋, 𝐺 . 



Model explanations

Basic post-hoc model explainers. 

Given and , the contribution of to can be quantified by

• { } ,  marginal expectation (ME), [PDP, Freidman, 2001]

• ,  conditional expectation (CE)

Note: Marginal explains and the c .

To design fairness interpretability we first review model explanations.



Model explanations

Post-hoc explainers (game-theoretical)

• Players: 𝑁 = {1,2, … , 𝑛} (features become player)

• Game: set function 𝑣 𝑆 , 𝑆 ⊂ 𝑁,  𝑣 𝑁 = total payoff

• Shapley value [Shapley, 1953]

𝜑 𝑣 = ∑
! !

!
𝑣 𝑆 − 𝑣 𝑆\{𝑖}  , 𝑖 ∈ 𝑁  ⊂

𝜑 is efficient:  ∑ 𝜑 𝑣 = 𝑣(𝑁),  linear,  symmetric.

Probabilistic games 

• 𝑣 𝑆; 𝑋, 𝑓 =  𝔼[𝑓(𝑋 , 𝑋 )|𝑋 ],  conditional game explores model predictions

• 𝑣 𝑆; 𝑋, 𝑓 = 𝔼 𝑓 𝑥 , 𝑋 | ,  marginal game explores the model



Fairness Interpretability

Definition (basic bias explanations)

• Given an explainer 𝐸 𝑋; 𝑓 of predictor 𝑋 , the bias explanation is defined via the transport cost

𝛽 𝑓 𝑋, 𝐺 = 𝑊 𝐸 (𝑋) 𝐺 = 0, 𝐸 (𝑋) 𝐺 = 1

• Positive and negative bias explanations 𝛽± are defined as transport effort in favorable and non-favorable 

directions:    𝛽± = ∫ 𝐹 | 𝑝 − 𝐹 |  𝑝
𝒫 ±

𝑑𝑝

Notes

• Type of ML explainers matters (marginal vs conditional)

• 𝛽 quantifies the positive contribution (increase in positive flow and decrease in negative)



Fairness Interpretability

Example: basic bias explanations based on marginal Shapley model explainer

𝜇 = 5, 𝑎 = 10, −4,16,1, −3

𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 0.5 + 𝐺  
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1  
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1 − 0.5𝐺
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1 − 0.75𝐺

𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑓 𝑋

𝑓 𝑋 = 𝜎 ∑𝑋 − 24.5
𝜍 = −1



Fairness Interpretability

Example (bias offsetting)

𝑋 ∼ 𝒩 𝜇, 2 − 𝐺  
𝑋 ∼ 𝒩(𝜇, 1 + 𝐺)
𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑓 𝑋 )
𝑓 𝑋 = 𝜎(2𝜇 − 𝑋 − 𝑋 )



Fairness Interpretability

• Basic bias explanations are not additive.

• Do not explain the direct contribution to the negative and positive model bias.

Game theoretical approach

• Consider an ML explainer 𝐸 (𝑋; 𝑓) of predictor 𝑋 , 𝑆 ⊂ {1,2, … 𝑛}

• Predictors 𝑋 ∈  are players that push/pull explainer subpopulation distributions apart when joining a coalition 𝑆 ⊂ 𝑁 

• A game 𝑣 𝑆 = 𝐵𝑖𝑎𝑠 𝐸 𝑋 𝐺 = 𝑊 𝐸 (𝑋) 𝐺 = 0, 𝐸 (𝑋) 𝐺 = 1

• A game 𝑣 ± 𝑆 = 𝐵𝑖𝑎𝑠± (𝐸 (𝑋)|𝐺) 

• Shapley bias explanations 𝜑 𝑓 𝑋, 𝐺 = 𝜑[𝑣 ],   𝜑 ± 𝑓 𝑋, 𝐺 = 𝜑[𝑣 ±]

𝐵𝑖𝑎𝑠± 𝑓 𝑋, 𝐺 =  𝜑 ± 𝑓 𝑋, 𝐺

Note: explanations are signed and additive



Fairness Interpretability

Example (marginal Shapley-bias explanations)

𝜇 = 5, 𝑎 = 10, −4,16,1, −3

𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 0.5 + 𝐺  
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1  
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1 − 0.5𝐺
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1 − 0.75𝐺

𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑓 𝑋 , 𝑓 𝑋 = 𝜎(∑𝑋 −

24.5)

𝜑[𝑣 ±(⋅, 𝜑[𝑣 ])] 𝜑[𝑣 (⋅, 𝜑[𝑣 ])]



Stability of bias explanations

• Conditional bias explanations are consistent with the data; computational complexity might be infeasible under dependencies in 𝑋

• Marginal bias explanations are consistent with the structure of the model 𝑓(𝑥), complexity 𝑂(2 )

Lemma (stability [Miroshnikov et al 2021a])

The conditional and marginal Shapley-bias explanations have the following properties:

i. |𝜑 ± 𝑓 𝐺, 𝜑 𝑣 − 𝜑 ± 𝑓 𝑔, 𝜑 𝑣 | ≤ 𝐶 𝑓 − 𝑔

ii. |𝜑 ± 𝑓 𝐺, 𝜑 𝑣 − 𝜑 ± 𝑓 𝑔, 𝜑 𝑣 | ≤ 𝐶 𝑓 − 𝑔 ( ), 𝑃 = ∑ 𝑃 ⊗ 𝑃⊂

Notes (Miroshnikov et al, 2021b, arXiv:2102.10878) : 
• For marginal Shapley-bias explanations continuity in 𝐿 (𝑃 ) in general breaks down under dependencies in 𝑋
• Marginal and conditional points of view can be unified via grouping and stability in 𝐿 (𝑃 ) is guaranteed
• Complexity can be reduced via quotient games and recursive approach



Bias mitigation

Superposition [Miroshnikov et al, 2021c]

𝐵𝑖𝑎𝑠 𝑓 𝑋, 𝐺 = ∑�̅� + ∑�̅� − ∑�̅� − ∑�̅� ≥ 0

with �̅�± = max 𝜑 𝑣 ± , 0 ,    �̅�± = max (−𝜑 𝑣 ± , 0)

Special case (typical one)

Let 𝑓 be positively-biased model, that is, 𝐵𝑖𝑎𝑠 𝑓 𝑋, 𝐺 > 0, 𝐵𝑖𝑎𝑠 𝑓 𝑋, 𝐺 = 0. Then

𝐵𝑖𝑎𝑠 𝑓 𝑋, 𝐺 = ∑�̅� − ∑�̅� ≥ 0

where �̅� = �̅� + �̅� , �̅� = �̅� + �̅� .

Note: This expression is the key to the bias mitigation procedure.



Bias mitigation

The relationship 𝐵𝑖𝑎𝑠 𝑓 𝑋, 𝐺 = ∑�̅� − ∑�̅� ≥ 0 is the key for bias mitigation via postprocessing:

1. Predictors with insignificant bias explanations are not relevant. This reduces dimensionality.

2. Adjusting the model so that �̅� ↓ and  �̅� ↑ should  lead to model bias decrease.

Question: How to construct a postprocessed model 𝑓(𝑋; 𝑓) that does not rely on (𝑋, 𝐺)?



Bias mitigation

Efficient frontier via rebalancing [Miroshnikov et al 2021c]

• 𝑀 = {𝑖 , 𝑖 , … 𝑖 } most bias impactful predictors

• ℱ = 𝑓: 𝑓 = 𝒞 𝑓 𝑇 𝑋 ; 𝛼 , 𝑋 , 𝛼 ∈ 𝐴 ⊂ ℝ

• 𝑇 ⋅; 𝛼 adjusts each predictor appropriately (scaling)

• 𝒞[⋅] calibrates the distribution 

• Efficient frontier is recovered by solving:

𝛼∗ 𝜔 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝔼 𝐿 𝑌, 𝑓 + 𝜔 ⋅ 𝐵𝑖𝑎𝑠 (𝑓|𝑋, 𝐺)

Strategies for choosing 𝑀

1. Given 𝑚∗: 𝑁± = {𝑖: 𝑚∗-highest 𝛽±}. Set 𝑀 = 𝑁 ∪ 𝑁 .

2. Given 𝑚∗: 𝑀 = {𝑖: 𝑚∗-highest 𝛽 }. Set 𝑀 = 𝑁 ∪ 𝑁 .



Bias mitigation

Effect of compression:

• Compressing 𝑋 , 𝑋  via a compressive map 𝑇(𝑥 ; 𝑥∗)

• Set 𝑓 = 𝑓 𝑇(𝑋 ; 𝑥∗), 𝑋 , 𝑇(𝑋 ; 𝑥∗), 𝑋 , 𝑋 , 𝑥∗ = 𝔼[𝑋 ]

Example

𝜇 = 5, 𝑎 = 10, −4,16,1, −3

𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 0.5 + 𝐺  
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1  
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1 − 0.5𝐺
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1 − 0.75𝐺

𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑓 𝑋 , 𝑓 𝑋 = 𝜎 2 ∑𝑋 − 24.5
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