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Introduction n

• Predictive ML models, and strategies that rely on such models, are subject to laws and regulations that 

ensure fairness (e.g. ECOA, EEOA).

• Examples of protected attributes: race, gender, age, ethnicity, national origin, marital status, etc.

• Tradeoff between accuracy and bias.

Main steps in ML fairness

1. Fairness assessment (or bias measurement).

2. Bias mitigation.



Setup

Data 𝑋, 𝐺, 𝑌

• 𝑋 ∈ ℝ௡, predictors

• 𝐺 ∈ 0,1  (e.g. male/female)

• 𝑌 ∈ {0,1} or 𝑌 ∈ ℝ, response variable

Models

• 𝑓 𝑋 = ℙ෡ 𝑌 = 1 𝑋 or 𝔼෡ 𝑌 𝑋 trained regressor

• 𝑌௧ = 1 ௙ ௑ வ௧  , a classifier for a given threshold 𝑡 ∈ ℝ

• 𝑌෠ , a classifier

Labels

• Non-protected class: 𝐺 = 0

• Favorable outcome: 𝑌 = 0  



Classifier fairness

• ML bias can be viewed as an ability to differentiate between subpopulations at the level of data or outcomes
(Dwork et al 2012) 

• Statistical parity (Feldman et al, 2015) 

ℙ 𝑌෠ = 0 𝐺 = 0 = ℙ 𝑌෠ = 0 𝐺 = 1

• Equalized odds (Hardt et al, 2015) 

ℙ 𝑌෠ = 0 𝑌 = 𝑦, 𝐺 = 0 = ℙ 𝑌෠ = 0 𝑌 = 𝑦, 𝐺 = 1 , 𝑦 ∈ {0,1}

• Equal opportunity (Hardt et al, 2015) 

ℙ 𝑌෠ = 0 𝑌 = 0, 𝐺 = 0 = ℙ 𝑌෠ = 0 𝑌 = 0, 𝐺 = 1



Classifiers fairness

Statistical parity classifier bias

𝑏𝑖𝑎𝑠 𝑌௧|𝑋, 𝐺 = ℙ 𝑌௧ = 0 𝐺 = 0 − ℙ 𝑌௧ = 0 𝐺 = 1

Example (proxy predictor) 

• 𝑋 ~ 𝑁 5 − 𝐺, 5   ,  ℙ 𝐺 = 0 = ℙ 𝐺 = 1 = 0.5

• 𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑓(𝑋)), 𝑓(𝑥) = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 5 − 𝑥



Fairness with awareness

Selected approaches for bias reduction in classifiers with access to protected attributes

• Maximization with fairness constraints 

𝑌∗ 𝑋, 𝐺   𝑜𝑟  𝑌∗ 𝑋 = max
௙௔௜௥௡௘௦௦(௒∗|ீ)

𝔼 ℒ 𝑌∗, 𝑋 ௧௥௔௜௡

Dwork et al (2012), Woodworth et al (2017),  Zhang et al (2018), and many others.

• Post-corrective methods (Hardt et al, 2015)

• Study of equalized odds, equal opportunity, statistical parity 

• Construction of  fair randomized classifier 𝑌෨ 𝑋, 𝐺; 𝑓 ∈ 𝒫({0,1}) via post-processing

• Dataset repairment via optimal transport. Feldman et al (2015), Gordaliza et al. (2019).



Fairness with awareness

Fair dataset construction. Feldman et al (2015)

• Geometric repair: 𝑋௜|𝐺 = 𝑘 moving towards Wasserstein barycenter 𝑋෨௜.

• Training a classifier on repaired dataset 𝑋෨ 𝑋, 𝐺, 𝜆 ,  𝜆 ∈ 0,1

• Fairer predictors imply fairer classifier

• Useful when 𝑌 is not available

Random repair. Gordaliza et al (2019)

• Controlling the statistical parity bias via geometric repair is difficult

• Control must be via TV-distance:

𝑏𝑖𝑎𝑠஼ 𝑌෠ 𝑋, 𝐺 ≤ 𝑑்௏(𝑃௑|ீୀ଴, 𝑃௑|ீୀଵ)

• Random repair picks at random, 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜆 , between samples of 𝑃௑|ீୀ௞ and the barycenter of subpopulations:

𝑏𝑖𝑎𝑠஼ 𝑌෠ 𝑋෨ఒ, 𝐺 ≤ 𝑑்௏ 𝑃௑෨|ீୀ଴, 𝑃௑෨|ீୀଵ = 1 − 𝜆



Motivation

Comments

• Bias measurements test fairness of predictors 𝑋 or a classifier 𝑌෠, not the regressor 𝑓 𝑋

• Mitigation procedures focus on the construction of fair classifiers 𝑌෠ ∗(𝑋, 𝐺), not a fair regressor.

Regulatory constraints. Fairness without awareness.

• 𝐺 is typically not collected.

• Training with access to 𝐺 is not allowed.

• Models  (including post-processed ones) 𝑓(𝑋, 𝐺) that require access to 𝐺 are not allowed.

Proxy models of 𝐺 for validation

• Certain proxy models 𝐺෨ for 𝐺 are allowed for validation by compliance office. 𝐺෨ is prohibited to share outside of it.

• Postprocessing is possible by compliance but the model 𝑓ሚ(𝑋) must rely on 𝑋 only. No leakage of (𝑋, 𝐺෨) is allowed.



Objectives of our work

Given a trained model regressor or classification score 𝑓(𝑋):

1. Measurement. Evaluate regressor bias.  

2. Bias Interpretability. Quantify the contribution of each predictor to that bias.

3. Mitigation. Produce family of post-processed models 𝑓ሚఈ(𝑋; 𝑓) using a proxy model 𝐺෨. 



Regressor bias

Model (regressor) bias

𝐵𝑖𝑎𝑠ௐభ
𝑓 𝑋, 𝐺 = 𝑊ଵ 𝑓 𝑋 𝐺 = 0, 𝑓 𝑋 𝐺 = 1  

• Wasserstein metric 𝑊ଵ (optimal transport cost)

𝑊ଵ(𝜇଴, 𝜇ଵ) = inf
గ∈𝒫(𝒵మ)

∫ 𝑧ଵ − 𝑧ଶ  𝜋(𝑑𝑧ଵ, 𝑑𝑧ଶ), 𝜋 with marginals 𝜇଴, 𝜇ଵ  

• 𝜇௞ = 𝑃௙ ௑ |ீୀ௞, k ∈ {0,1}

Note: The main focus is on the bias in the output (model), not the input (predictors).



Model bias metrics

Basic properties (one-dimension)

• 𝜇ଵ, 𝜇ଶ on ℬ(ℝ), there exists order preserving optimal transport plan 𝜋∗ such that

Wଵ 𝜇ଵ, 𝜇ଶ = ∫ |𝑥ଵ − 𝑥ଶ| 𝑑𝜋∗ = ∫ 𝐹ఓభ

ିଵ
𝑝 − 𝐹ఓమ 

ିଵ
𝑝 𝑑𝑝 = ∫ 𝐹ఓభ

𝑡 − 𝐹ఓమ
(𝑡) 𝑑𝑡

• Transport map vs transport plan:



Positive and negative flows

Need to understand whether the model favors majority class or minority one.

Assumption:  Model 𝑓 𝑋 ∈ ℝ has a favorable direction 𝜍௙ = ±1. 

Definition: 𝐵𝑖𝑎𝑠ௐభ

± (𝑓|𝑋, 𝐺) is the cost of transporting P௙ ௑ |ீୀ଴ in favorable/non-favorable directions.

Example:

𝑋 ∼ 𝒩 𝜇, 1 + 𝐺 𝜇

𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑓 𝑋

𝑓 𝑋 = 𝜎 𝜇 − 𝑋

𝜁௙ = −1



Model bias metrics

Facts [Miroshnikov et al, 2021a]

• Integrated statistical parity bias:

o 𝐵𝑖𝑎𝑠ௐభ
𝑓 𝑋, 𝐺 = ∫ 𝑏𝑖𝑎𝑠 𝑌௧ 𝑋, 𝐺 𝑑𝑡

o 𝐵𝑖𝑎𝑠ௐభ

± 𝑓 𝑋, 𝐺 = ∫ 𝑏𝑖𝑎𝑠 𝑌௧ 𝑋, 𝐺  𝑑𝑡
𝒯±

• Integrated generic parity bias: 𝒜 = {𝐴ଵ, … , 𝐴ெ},  ℙ 𝑌௧ = 1 𝐺 = 0, 𝐴௠ = ℙ(𝑌௧ = 1|𝐺 = 1, 𝐴௠), 𝐴௠ ∈ 𝒜

𝐵𝑖𝑎𝑠ௐభ,𝒜 𝑓 𝑋, 𝐺 = ∑𝑤௠𝑊ଵ(𝑓 𝑋 𝐺 = 0, 𝐴௠ , 𝑓 𝑋 𝐺 = 1, 𝐴௠ ) = ∫ 𝑏𝑖𝑎𝑠𝒜 𝑌௧ 𝑋, 𝐺 𝑑𝑡



Input-output bias relationship

• Bias in predictors propagates through the model:

𝐵𝑖𝑎𝑠ௐభ
𝑓 𝑋, 𝐺 ≤  𝑓 ௅௜௣𝑊ଵ 𝑋 𝐺 = 0, 𝑋 𝐺 = 1

• Fairness of predictors is sufficient for model fairness, but not necessary:

𝑋ଵ ∼ 𝑁 𝜏 ⋅ 𝐺, 1 , 𝑋ଶ ∼ 𝑁 1,1 ,   𝑌 =
ଵ

ఛ
𝑋ଵ + 𝑋ଶ

Here 𝐵𝑖𝑎𝑠 𝑌 𝑋, 𝐺 → 0 and  𝐵𝑖𝑎𝑠 𝑋 𝐺 → ∞ as  𝜏 → ∞.

• We would like to understand how each predictor contributes to the model bias 𝐵𝑖𝑎𝑠ௐభ
𝑓 𝑋, 𝐺 . 



Model explanations

Basic post-hoc model explainers. 

Given and ௡, the contribution of ௜ to can be quantified by

• ௜
ொ

௜ ି{௜} ௫೔ୀ௑೔
,  marginal expectation (ME), [PDP, Freidman, 2001]

• ௜
஼ா

௜ ,  conditional expectation (CE)

Note: Marginal explains and the c .

To design fairness interpretability we first review model explanations.



Model explanations

Post-hoc explainers (game-theoretical)

• Players: 𝑁 = {1,2, … , 𝑛} (features become player)

• Game: set function 𝑣 𝑆 , 𝑆 ⊂ 𝑁,  𝑣 𝑁 = total payoff

• Shapley value [Shapley, 1953]

𝜑௜ 𝑣 = ∑
௦ିଵ ! ௡ି௦ !

௡!
𝑣 𝑆 − 𝑣 𝑆\{𝑖}  , 𝑖 ∈ 𝑁  ௌ⊂ே

𝜑 is efficient:  ∑ 𝜑௜ 𝑣 = 𝑣(𝑁)௜ ,  linear,  symmetric.

Probabilistic games 

• 𝑣஼ா 𝑆; 𝑋, 𝑓 =  𝔼[𝑓(𝑋ௌ, 𝑋ିௌ)|𝑋ௌ],  conditional game explores model predictions

• 𝑣ொ 𝑆; 𝑋, 𝑓 = 𝔼 𝑓 𝑥ௌ, 𝑋ିௌ |௫ೄୀ௑ೄ
,  marginal game explores the model



Fairness Interpretability

Definition (basic bias explanations)

• Given an explainer 𝐸௜ 𝑋; 𝑓 of predictor 𝑋௜, the bias explanation is defined via the transport cost

𝛽௜ 𝑓 𝑋, 𝐺 = 𝑊ଵ 𝐸௜(𝑋) 𝐺 = 0, 𝐸௜(𝑋) 𝐺 = 1

• Positive and negative bias explanations 𝛽௜
± are defined as transport effort in favorable and non-favorable 

directions:    𝛽௜
± = ∫ 𝐹ா೔|ீୀ଴

ିଵ
𝑝 − 𝐹ா೔|ீୀଵ 

ିଵ
𝑝

𝒫೔±
𝑑𝑝

Notes

• Type of ML explainers matters (marginal vs conditional)

• 𝛽ା quantifies the positive contribution (increase in positive flow and decrease in negative)



Fairness Interpretability

Example: basic bias explanations based on marginal Shapley model explainer

𝜇 = 5, 𝑎 =
ଵ

ଶ଴
10, −4,16,1, −3

𝑋ଵ ∼ 𝒩 𝜇 − 𝑎ଵ 1 − 𝐺 , 0.5 + 𝐺  
𝑋ଶ ∼ 𝒩 𝜇 − 𝑎ଶ 1 − 𝐺 , 1
𝑋ଷ ∼ 𝒩 𝜇 − 𝑎ଷ 1 − 𝐺 , 1  
𝑋ସ ∼ 𝒩 𝜇 − 𝑎ସ 1 − 𝐺 , 1 − 0.5𝐺
𝑋ହ ∼ 𝒩 𝜇 − 𝑎ହ 1 − 𝐺 , 1 − 0.75𝐺

𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑓 𝑋

𝑓 𝑋 = 𝜎 ∑𝑋௜ − 24.5
𝜍௙ = −1



Fairness Interpretability

Example (bias offsetting)

𝑋ଵ ∼ 𝒩 𝜇, 2 − 𝐺  
𝑋ଶ ∼ 𝒩(𝜇, 1 + 𝐺)
𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑓 𝑋 )
𝑓 𝑋 = 𝜎(2𝜇 − 𝑋ଵ − 𝑋ଶ)



Fairness Interpretability

• Basic bias explanations are not additive.

• Do not explain the direct contribution to the negative and positive model bias.

Game theoretical approach

• Consider an ML explainer 𝐸ௌ(𝑋; 𝑓) of predictor 𝑋ௌ, 𝑆 ⊂ {1,2, … 𝑛}

• Predictors 𝑋௜ ௜∈ே are players that push/pull explainer subpopulation distributions apart when joining a coalition 𝑆 ⊂ 𝑁 

• A game 𝑣௕௜௔௦ 𝑆 = 𝐵𝑖𝑎𝑠ௐభ
𝐸ௌ 𝑋 𝐺 = 𝑊ଵ 𝐸ௌ(𝑋) 𝐺 = 0, 𝐸ௌ(𝑋) 𝐺 = 1

• A game 𝑣௕௜௔௦± 𝑆 = 𝐵𝑖𝑎𝑠ௐభ

± (𝐸ௌ(𝑋)|𝐺) 

• Shapley bias explanations 𝜑௕௜௔௦ 𝑓 𝑋, 𝐺 = 𝜑[𝑣௕௜௔௦],   𝜑௕௜௔௦± 𝑓 𝑋, 𝐺 = 𝜑[𝑣௕௜௔௦±]

𝐵𝑖𝑎𝑠ௐభ

± 𝑓 𝑋, 𝐺 =  ෍ 𝜑௕௜௔௦± 𝑓 𝑋, 𝐺

௜

Note: explanations are signed and additive



Fairness Interpretability

Example (marginal Shapley-bias explanations)

𝜇 = 5, 𝑎 =
ଵ

ଶ଴
10, −4,16,1, −3

𝑋ଵ ∼ 𝒩 𝜇 − 𝑎ଵ 1 − 𝐺 , 0.5 + 𝐺  
𝑋ଶ ∼ 𝒩 𝜇 − 𝑎ଶ 1 − 𝐺 , 1
𝑋ଷ ∼ 𝒩 𝜇 − 𝑎ଷ 1 − 𝐺 , 1  
𝑋ସ ∼ 𝒩 𝜇 − 𝑎ସ 1 − 𝐺 , 1 − 0.5𝐺
𝑋ହ ∼ 𝒩 𝜇 − 𝑎ହ 1 − 𝐺 , 1 − 0.75𝐺

𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑓 𝑋 , 𝑓 𝑋 = 𝜎(∑𝑋௜ −

24.5)

𝜑[𝑣௕௜௔௦±(⋅, 𝜑[𝑣ொ])] 𝜑[𝑣௕௜௔௦(⋅, 𝜑[𝑣ொ])]



Stability of bias explanations

• Conditional bias explanations are consistent with the data; computational complexity might be infeasible under dependencies in 𝑋

• Marginal bias explanations are consistent with the structure of the model 𝑓(𝑥), complexity 𝑂(2௡)

Lemma (stability [Miroshnikov et al 2021a])

The conditional and marginal Shapley-bias explanations have the following properties:

i. |𝜑௜
௕௜௔௦± 𝑓 𝐺, 𝜑ௌ 𝑣஼ா − 𝜑௜

௕௜௔௦± 𝑓 𝑔, 𝜑ௌ 𝑣஼ா | ≤ 𝐶 𝑓 − 𝑔 ௅మ ௉೉

ii. |𝜑௜
௕௜௔௦± 𝑓 𝐺, 𝜑ௌ 𝑣ொ − 𝜑௜

௕௜௔௦± 𝑓 𝑔, 𝜑ௌ 𝑣ொ | ≤ 𝐶 𝑓 − 𝑔 ௅మ(௉෨೉), 𝑃෨௑ =
ଵ

ଶ೙
∑ 𝑃௑ೄ

⊗ 𝑃௑షೄௌ⊂ே

Notes (Miroshnikov et al, 2021b, arXiv:2102.10878) : 
• For marginal Shapley-bias explanations continuity in 𝐿ଶ(𝑃௑) in general breaks down under dependencies in 𝑋
• Marginal and conditional points of view can be unified via grouping and stability in 𝐿ଶ(𝑃௑) is guaranteed
• Complexity can be reduced via quotient games and recursive approach



Bias mitigation

Superposition [Miroshnikov et al, 2021c]

𝐵𝑖𝑎𝑠ௐଵ
𝑓 𝑋, 𝐺 = ∑𝛽̅௜

ାା + ∑𝛽̅௜
ିା − ∑𝛽̅௜

ାି − ∑𝛽̅௜
ିି ≥ 0

with 𝛽̅௜
±ା = max 𝜑௜ 𝑣௕௜௔௦± , 0 ,    𝛽̅௜

±ି = max (−𝜑௜ 𝑣௕௜௔௦± , 0)

Special case (typical one)

Let 𝑓 be positively-biased model, that is, 𝐵𝑖𝑎𝑠ௐభ

ା 𝑓 𝑋, 𝐺 > 0, 𝐵𝑖𝑎𝑠ௐభ

ି 𝑓 𝑋, 𝐺 = 0. Then

𝐵𝑖𝑎𝑠ௐభ
𝑓 𝑋, 𝐺 = ∑𝛽̅௜

ା − ∑𝛽̅௜
ି ≥ 0

where 𝛽̅௜
ା = 𝛽̅௜

ାା + 𝛽̅௜
ିି, 𝛽̅௜

ି = 𝛽̅௜
ିା + 𝛽̅௜

ାି.

Note: This expression is the key to the bias mitigation procedure.



Bias mitigation

The relationship 𝐵𝑖𝑎𝑠ௐభ
𝑓 𝑋, 𝐺 = ∑𝛽̅௜

ା − ∑𝛽̅௜
ି ≥ 0 is the key for bias mitigation via postprocessing:

1. Predictors with insignificant bias explanations are not relevant. This reduces dimensionality.

2. Adjusting the model so that 𝛽̅௜
ା ↓ and  𝛽̅௜

ି ↑ should  lead to model bias decrease.

Question: How to construct a postprocessed model 𝑓ሚ(𝑋; 𝑓) that does not rely on (𝑋, 𝐺)?



Bias mitigation

Efficient frontier via rebalancing [Miroshnikov et al 2021c]

• 𝑀 = {𝑖ଵ, 𝑖ଶ, … 𝑖௠} most bias impactful predictors

• ℱ = 𝑓ሚ: 𝑓ሚ = 𝒞 𝑓 𝑇 𝑋ெ; 𝛼 , 𝑋ିெ , 𝛼 ∈ 𝐴 ⊂ ℝ௠௞

• 𝑇 ⋅; 𝛼 adjusts each predictor appropriately (scaling)

• 𝒞[⋅] calibrates the distribution 

• Efficient frontier is recovered by solving:

𝛼∗ 𝜔 = 𝑎𝑟𝑔𝑚𝑖𝑛௙ሚ 𝔼 𝐿 𝑌, 𝑓ሚ + 𝜔 ⋅ 𝐵𝑖𝑎𝑠ௐభ
(𝑓ሚ|𝑋, 𝐺)

Strategies for choosing 𝑀

1. Given 𝑚∗: 𝑁± = {𝑖: 𝑚∗-highest 𝛽௜
±}. Set 𝑀 = 𝑁ା ∪ 𝑁ି.

2. Given 𝑚∗: 𝑀 = {𝑖: 𝑚∗-highest 𝛽௜}. Set 𝑀 = 𝑁ା ∪ 𝑁ି.



Bias mitigation

Effect of compression:

• Compressing 𝑋ଵ, 𝑋ଷ via a compressive map 𝑇(𝑥௜; 𝑥௜
∗)

• Set 𝑓ሚ = 𝑓 𝑇(𝑋ଵ; 𝑥ଵ
∗), 𝑋ଶ, 𝑇(𝑋ଷ; 𝑥ଷ

∗), 𝑋ସ, 𝑋ହ , 𝑥௜
∗ = 𝔼[𝑋௜]

Example

𝜇 = 5, 𝑎 =
ଵ

ଶ଴
10, −4,16,1, −3

𝑋ଵ ∼ 𝒩 𝜇 − 𝑎ଵ 1 − 𝐺 , 0.5 + 𝐺  
𝑋ଶ ∼ 𝒩 𝜇 − 𝑎ଶ 1 − 𝐺 , 1
𝑋ଷ ∼ 𝒩 𝜇 − 𝑎ଷ 1 − 𝐺 , 1  
𝑋ସ ∼ 𝒩 𝜇 − 𝑎ସ 1 − 𝐺 , 1 − 0.5𝐺
𝑋ହ ∼ 𝒩 𝜇 − 𝑎ହ 1 − 𝐺 , 1 − 0.75𝐺

𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑓 𝑋 , 𝑓 𝑋 = 𝜎 2 ∑𝑋௜ − 24.5
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