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Introduction

* Predictive ML models, and strategies that rely on such models, are subject to laws and regulations that
ensure fairness (e.g. ECOA, EEOA).
* Examples of protected attributes: race, gender, age, ethnicity, national origin, marital status, etc.

* Tradeoff between accuracy and bias.

Main steps in ML fairness

1. Fairness assessment (or bias measurement).

2. Bias mitigation.



Setup

Data (X,G,Y)

« X € R", predictors

« G €{0,1} (e.g. male/female)

* Ye{01}orY € R, response variable

Models
* f(X) = P(Y = 1]|X) or E(Y|X) trained regressor
* Y; = 1{rx)>t}, a classifier for a given threshold t € R

« ¥, aclassifier

Labels
* Non-protected class: G = 0

 Favorable outcome: Y =0



Classifier fairness

* ML bias can be viewed as an ability to differentiate between subpopulations at the level of data or outcomes
(Dwork et al 2012)

« Statistical parity (Feldman et al, 2015)

P(Y =0[G =0)=P(Y =0|G =1)

* Equalized odds (Hardt et al, 2015)
P(Y=0lY=y,6=0)=P(Y =0y =y,6=1),y € {0,1}

* Equal opportunity (Hardt et al, 2015)

P(Y=0y=06=0)=P(Y =0y =0,6=1)

EQUALITY EQUITY




Classifiers fairness

Statistical parity classifier bias
bias(Y;|X,G) = |P(Y, = 0|G = 0) —P(Y, = 0|G = 1)]|
Example (proxy predictor)

« X~N(5-G,V5),P(G=0)=P(G=1)=05
* Y ~ Bernoulli(f (X)), f(x) = logistic(5 — x)

— PY=1X) 1 - >
0.175 - = 0.5 —— P(Y,=0/6=0)-P(V,=0|G=1)
= eloes — P(Y,=0|Y=1,6=0)-P(Y,=0]Y=1,G=1)
0.150 - - —— P(Y,=0]Y=0,G=0)-P(Y,=0]Y=0,G=1)
—— Balanced error rate of th
0.125-
0.6- 0.3
0.100 -
El
0.075 - 4 0.2-
0.050 -
0.1-
0.025-
0.0
0.000 - = -5 0 5 U s 0.0 02 0.4 06 0.8

t (threshold)



Fairness with awareness

Selected approaches for bias reduction in classifiers with access to protected attributes

e Maximization with fairness constraints

* * — x y(train)
Y*(X,G) or Y*(X) rair 7{?52)((Y*|G)IE[L(Y X )]

Dwork et al (2012), Woodworth et al (2017), Zhang et al (2018), and many others.
* Post-corrective methods (Hardt et al, 2015)
* Study of equalized odds, equal opportunity, statistical parity

* Construction of fair randomized classifier Y (X, G; f) € P({0,1}) via post-processing

* Dataset repairment via optimal transport. Feldman et al (2015), Gordaliza et al. (2019).



Fairness with awareness

Fair dataset construction. Feldman et al (2015)

« Geometric repair: X;|G = k moving towards Wasserstein barycenter X;.
« Training a classifier on repaired dataset X(X,G, 1), A € [0,1]
* Fairer predictors imply fairer classifier

e Useful when Y is not available

Random repair. Gordaliza et al (2019)

* Controlling the statistical parity bias via geometric repair is difficult

* Control must be via TV-distance:
biaSC(ﬂX,G) < drv(Pxig=0, Px|¢=1)
* Random repair picks at random, Bernoulli(1), between samples of Py|s—j and the barycenter of subpopulations:

bias®(Y|X,,G) < dry(Pgig=0, Pig=1) = 1— 24



Motivation

Comments
*  Bias measurements test fairness of predictors X or a classifier ¥, not the regressor f(X)
* Mitigation procedures focus on the construction of fair classifiers ?*(X, G), not a fair regressor.
Regulatory constraints. Fairness without awareness.
* (@ istypically not collected.
* Training with access to G is not allowed.
* Models (including post-processed ones) f (X, G) that require access to G are not allowed.
Proxy models of G for validation
* Certain proxy models G for G are allowed for validation by compliance office. G is prohibited to share outside of it.

* Postprocessing is possible by compliance but the model f(X) must rely on X only. No leakage of (X, é) is allowed.



Objectives of our work

Given a trained model regressor or classification score f(X):

1. Measurement. Evaluate regressor bias.

2. Bias Interpretability. Quantify the contribution of each predictor to that bias.

3. Miitigation. Produce family of post-processed models {fa(X; f)} using a proxy model G.



Regressor bias

Model (regressor) bias

Biasy, (f|1X,6) = Wi (f(X)|G = 0, f(X)|G = 1)

* Wasserstein metric W, (optimal transport cost)

Wiy (o, ) = nE}Dn(gz){f |z, — z;| ©(dzy,dz;), ™ with marginals pg, 4y }

I"lD .-} Uj_

\ £
* e = Progie= k € (0,1 5" \
L 7'

Note: The main focus is on the bias in the output (model), not the input (predictors).



Model bias metrics

Basic properties (one-dimension)

* Uy, Uy on B(R), there exists order preserving optimal transport plan * such that
W _ —x,|dr* = [|[FFYm) = ECY)ldp = [ |E,. () — E,_(©)]dt
Ly 2) = [ |2 — x| dm = [ |F7 () — iy P 0)| dp = [ |F,, () = E, ()]
* Transport map vs transport plan:
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Positive and negative flows

Need to understand whether the model favors majority class or minority one.

Assumption: Model f(X) € R has a favorable direction ¢, = +1.

Definition: Biasvil,1 (f1X, G) is the cost of transporting P (x)|c=¢ in favorable/non-favorable directions.

Example:

X ~ N, (1+ G
Y ~ Bernoulli(f(X))
f&) =o(u—X)
{r=-1

0.175 -
0.150 -
0.125-
_,g 0.100-
0.075 -
0.050-
0.025-

0.000 -

-15  -10

B X|G=0
= X|G=1

20

25

1.0- — fA6=0CDF
— fG=1CDF
mm flow {f|G=0}-{f|IG=1}

0.8

p (probability)
o
o

©
B~

0.2-

0.0-

0.0 0.2 0.4 0.6 0.8 1.0
t (threshold)



Model bias metrics

Facts [Miroshnikov et al, 2021a]

* Integrated statistical parity bias:
o Biasy, (f|X,G) = [ bias(Y;|X, G)dt

o Biasy (fIX,6) = J;, bias(Y:|X, 6) dt

* Integrated generic parity bias: A = {44, ..., Ay}, P(Y; = 1|G =0,4,,) =P, =1|G =1,4,,), A, EA

Biasy, 4 (f1X,G) = Twiu Wi (f X)HG = 0,An}, fOHG = 1, 41}) = [ bias,(Y;1X, G)dt



Input-output bias relationship

* Bias in predictors propagates through the model:

Biasw, (f1X,6) < [flLipWi(XIG = 0,X|G = 1)

* Fairness of predictors is sufficient for model fairness, but not necessary:

X ~NWT-6,1), X, ~N(AD), ¥ ==X, + X,
Here Bias(Y|X,G) - 0 and Bias(X|G) —» o as T — oo,

* We would like to understand how each predictor contributes to the model bias Biasy,, (f|X, G).



Model explanations

To design fairness interpretability we first review model explanations.

Basic post-hoc model explainers.

Given f and X € R", the contribution of X; to f(X) can be quantified by
« EME(X; f) = E[f(xi, X—(3)||x,=x,, marginal expectation (ME), [PDP, Freidman, 2001]

- EFE(X;f) = E[f(X)]X;], conditional expectation (CE)

Note: Marginal explains x = f(x) and the conditional X(w) — f(X(w)).



Model explanations

Post-hoc explainers (game-theoretical)

* Players: N ={1,2,...,n} (features become player)

¢ Game: set function v(S), S € N, v(N) = total payoff

* Shapley value [Shapley, 1953]

~1)!(n—s)! , ,
0ilv] = sy T (4 (5) — w(S\(iD), i €N
@ is efficient: Y,; @;[v] = v(N), linear, symmetric.

Probabilistic games

o vE(S;X,f) = E[f(Xs,X_5)|Xs], conditional game explores model predictions

o vME(S X, f) = E[f (x5, X_5)]| xs=x,, Marginal game explores the model



Fairness Interpretability

Definition (basic bias explanations)
» Given an explainer E;(X; f) of predictor X;, the bias explanation is defined via the transport cost
Bi(f1X,G) = W1 (E;(X)|G = 0, E;(X)|G = 1)

* Positive and negative bias explanations [)’;—’ are defined as transport effort in favorable and non-favorable

directions: ;—r = f?ii |F,5};]:0(P) - Fgé]q (p)|dp

Notes

* Type of ML explainers matters (marginal vs conditional)

* [, quantifies the positive contribution (increase in positive flow and decrease in negative)



Fairness Interpretability

Example: basic bias explanations based on marginal Shapley model explainer

U="5a= %(10, ~4,16,1,—3)

X, ~N@—a,(1-6),05+G)

X ~Nu—a(1-06)1)

Xz ~NW—az;(1-6),1)

X, ~N(u—as(1—6),1—056)

Xs ~N(u—as(1—G),1—0.75G)

Y ~ Bernoulli(f(X))

fX)=0CX; —245) = e B
¢ =—1
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Fairness Interpretability

Example (bias offsetting)

Xi~NW2—-G6)

Xy ~N(u,1+G)

Y ~ Bernoulli(f (X))
fX)=0@u—-X1—X3)
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Fairness Interpretability

* Basic bias explanations are not additive.

* Do not explain the direct contribution to the negative and positive model bias.

Game theoretical approach

Consider an ML explainer E5(X; f) of predictor Xs, S c {1,2, ...n}

* Predictors {X;};ey are players that push/pull explainer subpopulation distributions apart when joining a coalition S € N
*  Agame v?'%(S) = Biasy, (Es(X)|G) = Wy (Es(X)|G = 0,Es(X)|G = 1)

bias+ — DinyoT
* Agame v”'®=(S) = Biasy, (Es(X)|G)

* Shapley bias explanations p?'% (f|X, G) = @[vP'®], @PE(f|X,G) = @[vPiesE]

Biasy, (fIX,6) = ) ¢P@(f1X,6)

Note: explanations are signed and additive



Fairness Interpretability

Example (marginal Shapley-bias explanations)

u="50a=-(10,-4161,-3)

X, ~N(—a;(1-6),05+0G)

X, ~N@—a,(1-6),1)
Xs~NWu—az;(1-0G6),1)

Xy ~N(u—a,(1-6),1-056)

Xe ~ N(u—ag(1—G),1—0.75G)

Y ~ Bernoulli(f(X)), f(X) = o(TX; —
24.5)

Q[P (, @[vMF])]

0-1 Model Bias = 0.1229 = 0.1229 (pos) + 0.0000 (neg).
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Stability of bias explanations

* Conditional bias explanations are consistent with the data; computational complexity might be infeasible under dependencies in X

* Marginal bias explanations are consistent with the structure of the model f(x), complexity O(2")

Lemma (stability [Miroshnikov et al 2021a])

The conditional and marginal Shapley-bias explanations have the following properties:

i 1o (F1G, ps[vCED) — 9! (flg, s [vEDI < ClIf — gll2p,

. ] ] ~ 1
i. 1ol (FIG, @s[VME]) — 9 (f1g, s [vMED| < CIIf = gllizgs gy, Px = 57 Zsen Pxs ® Pr_g

Notes (Miroshnikov et al, 2021b, arXiv:2102.10878) :

 For marginal Shapley-bias explanations continuity in L?(Px) in general breaks down under dependencies in X
« Marginal and conditional points of view can be unified via grouping and stability in L?(Py) is guaranteed

* Complexity can be reduced via quotient games and recursive approach



Bias mitigation
Superposition [Miroshnikov et al, 2021c]
Biasy , (fIX,G) = ¥B T+ B T =X ™= 2B~ =0

with gF = max(¢;[vP1®5%],0), B = max(—g;[v?"*%], 0)

Special case (typical one)

Let f be positively-biased model, that is, Bias]j,r,1 (f1X,G) > 0, Biasy, (f|X,G) = 0. Then

Biasy, (f1X,G) = YB; —¥B; =0

where B = Bt + B, B =Bt + B

Note: This expression is the key to the bias mitigation procedure.



Bias mitigation

The relationship Biasy, (flX,G) = Z,B_;L — Z,B_i_ = 0 is the key for bias mitigation via postprocessing:
1. Predictors with insignificant bias explanations are not relevant. This reduces dimensionality.

2. Adjusting the model so that ,8_l+ L and f; T should lead to model bias decrease.

Question: How to construct a postprocessed model f(X; f) that does not rely on (X, G)?



Bias mitigation

Efficient frontier via rebalancing [Miroshnikov et al 2021c]
« M ={iy,1i,,..1,,} most bias impactful predictors

« F={f:f =Clf(TXy; @), X_y)], @ € A c R™k}

* T(:; &) adjusts each predictor appropriately (scaling)

* C[-] calibrates the distribution

* Efficient frontier is recovered by solving:

a,(w) = argminf{IE[L(Y, f)] + w - Biasy, (f1X, G)}

Strategies for choosing M
1. Given m,: Ny = {i: m,-highest ,[)’ii}. SetM =N, UN_.
2. Givenm,: M = {i: m,-highest 5;}. Set M = N, U N_.
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Bias mitigation

Example

p=5a= %(10, —4,16,1,—3)
X\ ~NWw—a,(1-G6),05+G)
X ~N(p—ay(1-06)1)

X3 ~NW—az(1-G6)1)

X, ~N(u—a,(1-6),1—056)

X5 o N(M _ a5(1 _ G), 1-— 0.756) 1(Da-l)_Su‘szopulation distributions
Y ~ Bernoulli(f(X)),f(X) = g(z(zxi — 24_5)) — X
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(d) X3 CDFs

Effect of compression:
» Compressing X;, X5 via a compressive map T (x;; x;)

o Setf = f(T(Xy;x1), X2, T (X35 %3), X4, X5), x; = E[X;]

(b) X, CDFs (c) X, CDFs
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