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1. Motivation



Model complexity and interpretability

• Contemporary predictive and generative ML models are complex

o Neural Networks (NN) and Graph Neural networks (GNN)
o Gradient Boosting Machines (GBM)
o Unsupervised and semi-supervised methods (e.g. variational autoencoders)
o Large-Language models

• Interpretability (explainability) of ML models is crucial for business adoption, model 
documentation, regulatory oversight, and human acceptance and trust. Crucial in 
Banking, Insurance, Healthcare.

• Accuracy may come at the expense of interpretability
o Linear models are easy to interpret, 𝑌 = 𝑎ଵ𝑋ଵ + ⋯ + 𝑎𝑋.
o Nonlinear models (NN, GNN, GBM) are difficult to interpret.



Regulatory requirements

ML models and strategies that rely on ML models are subject to federal laws and regulations, including 
the Equal Credit Opportunity Act (ECOA), Fair Housing Act (FHA), and Equal Employment Opportunity Act 
(EEOA).

Financial institutions in the United States (US) are required under the ECOA to notify declined or 
negatively impacted applicants of the main factors that led to the adverse action.

Determining the factor contributing the most to an outcome of a model may be done via individualized 
feature attributions. 

Common approaches:
Self-interpretable models

Post-hoc model explanations



2. Use cases



Feature attribution for predictive ML models

ML risk models use historical, consumer and consumer reporting information to estimate the 
probability of default. US Federal regulations require lenders to provide applicants with the primary 
factors that contribute to an adverse action (i.e., decline).

Marketing campaigns. FI send out letters with descriptions of various products. These campaigns are 
costly. It makes sense to optimize advertising efforts based on which ad campaign (strategy) will bring 
in the most customers or has the highest level of engagement. Explainability techniques can be applied 
to assess the effectiveness of marketing campaigns or strategies to bring in customers.

Explainability methods. There are a variety of mathematical and statistical techniques that quantify the 
contribution of each element from the input vector to the predictive model output given the 
distribution of inputs. Game theoretic approaches are popular, as well as models that are inherently 
interpretable.



Individual feature attributions

Input 

• 𝑋, 𝑌 ,  where 𝑋 = (𝑋ଵ, … , 𝑋) are features, 𝑌 ∈ ℝ a response variable on (Ω, ℱ, ℙ).

• 𝑥 → 𝑓 𝑥 = 𝔼[𝑌|𝑋 = 𝑥]  or ℙ(𝑌 = 1|𝑋 = 𝑥)  (regressor or classification score).

(Local) Model explainer

Quantifies the contribution of an observation 𝑥 = 𝑥ଵ, 𝑥ଶ, … 𝑥 ∼ 𝑋 to the value 𝑓(𝑥). 

 ℝ ∋ 𝑥 → 𝐸 𝑥; 𝑓, 𝑋, ℐ = 𝐸ଵ, 𝐸ଶ, … 𝐸 ∈ ℝ .

Here the model 𝑓, the random vector 𝑋 and model implementation ℐ serve as parameters.



Game-theoretic approaches

• Game theoretic approaches have been explored 
in Štrumbelj & Kononenko (2014), Lundberg & Lee (2017)

• Cooperative game 𝑁, 𝑣

• set of players indexed by 𝑁 = 1,2, … , 𝑛

• utility 𝑣(𝑆), 𝑆 ⊆ 𝑁

• Game value

𝑁, 𝑣 → ℎ 𝑁, 𝑣 = ℎ 𝑁, 𝑣 ୀଵ
 ∈ ℝ

• Shapley value (Shapley, 1953) 

𝜑 𝑣 = ∑
ୱ! ି௦ିଵ !

!
𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ,ௌ⊆ே∖   𝑖 ∈ 𝑁.  

[from gametheory.online]



ML games and values
We study game values in the marginalist form

ℎ 𝑁, 𝑣 =  𝑤 𝑆, |𝑁| ⋅ 𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆  

ௌ⊆ே∖ 

ML games

𝑣ா 𝑆, 𝑥; 𝑋, 𝑓 =  𝔼 𝑓 𝑋ௌ, 𝑋ିௌ 𝑋ௌ = 𝑥௦ (conditional game)

𝑣ொ 𝑆, 𝑥; 𝑋, 𝑓 = 𝔼 𝑓 𝑥ௌ, 𝑋ିௌ (marginal game)

Works

• Fast marginal game value attributions for tree-based models with symmetric trees
[K. Filom, A.M., K. Kotsiopoulos, A. Ravi Kannan, Foundations of Data Science (2024)]

• On stability of AI explanations based on marginal and conditional game values 
[A.M., K. Kotsiopoulos, K. Filom, A. Ravi Kannan, arxiv:2102.10878 (2024)]

• Sampling algorithms for attributions based on coalitional values such as Owen value
[K. Kotsiopoulos, A.M., K. Filom, A. Ravi Kannan arxiv:2303.10216 (2023)]



Example: image classification feature attribution
[Ribeiro et al. “Why should I trust you?”]



Clustering methods via manifold learning

Customer behavior. Clustering algorithms are used to categorize 
customer behavior and segment the datasets of features.  To get 
the intuition and insights about the data. 

Manifold learning creates the data embedding that helps with 
denoising and regularization of the data. In some cases it can 
help to significantly improve clustering by the regularization 
and improved representation.

Feature attribution (local and global) allows one to characterize 
different aspects of population in terms of features. Each 
predictors has a semantic meaning. Segments can be 
characterized by features.

https://umap-learn.readthedocs.io/en/latest/supervised.html



1. Construct a topological representation of data, e.g. KNN-graph or weighted graph like in UMAP using topological data analysis.

2. Initialize the low dimensional representation using e.g. spectral embedding (e.g. the Laplacian eigenmap).

3. Optimize a loss function making the low dimensional representation to have a fuzzy topological representation as close as 
possible to the original one. 

4. (optional) Perform clustering in the embedded space.

Issues with UMAP
• Laplacian eigenmaps initialization focus on low-frequency overlooking higher-frequency patterns.
• Lack of explicit mapping linking the original high dimensional dataset to its low-dimensional dimensional embedding.

Manifold Learning and Clustering

• UMAP [McInnes et al 2018], tSNE [van der Maaten & Hinton, 2008], Laplacian eigenmaps [Belkin & Niyogi 2003] 



Multi-Scale Graph Embedding Approach for Interpretable Manifold Learning

Our work [S. Deutch, L. Yelibi, A.T. Lin, A. Ravi Kannan, arXiv:2406.02778,2024]

• Spectral graph wavelets (SGW) for multiscale encoding

• Correspondence of original and embedded features

• Accuracy



Generative AI 
and LLM

Generative AI (genAI) might be helpful for customer 
support, compliance, and risk management.
• Understanding policies; e.g. helping to make a query into a 

policy to make the discussion on the phone smooth.
• It is possible to use genAI to scan the documents and generate 

summaries. 
• Sentiment analysis (multi-class analysis) e.g. text messages, 

phone, etc. This is used to classify the sentiment by using genAI 
instead of the traditional NLP classifier e.g. Large Language 
Model (LLM) based transformer.

Interpretability of LLM models

• LLM models trained on vast amount of data and different parts 
responsible for the output. 

• Lack of transparency poses critical challenges when it comes to 
their adaptation by financial institutions.



Mechanistic Interpretability

C. Olah et. al, Zoom In: An Introduction to Circuits. Distill, 2020.

N. Elhage et. al. A Mathematical Framework for Transformer 
Circuits. Transformer Circuits Thread, 2021.

A. Golgoon, K. Filom, A. Ravi Kannan, Mechanistic 
interpretability of large language models with applications to 
the financial services industry, ACM on AI in Finance, 2024.

• Examples of how algorithmic tasks can be designed for 
compliance monitoring purposes.

Understanding an LLM at the level of 
neurons, circuits, and attention heads
• Micro scale explanation 
• Lack of transparency of LLMs

• Safety challenges such as hallucination, toxicity, 
unfairness. 

• Misalignment with human values.
• Model pruning

• Significant cost savings and rapid inference time



Fair Lending

• The decision-making process may lead to 
certain unintended type of bias impacting sub-
populations

• ECOA and FHA laws and regulations prohibit 
discrimination against protected classes (sub-
populations); thus, disparities against the sub-
populations must be considered.

• The disparities in the outputs, maybe be 
measured as differences in probability of default 

ℙ 𝑌 = 0 𝐺 = 0 − ℙ 𝑌 = 0 𝐺 = 1



ML Fairness Explainability

A.M., K. Kotsiopoulos, R. Franks, A. Ravi Kannan, “Wasserstein-
based fairness interpretability framework for machine learning 
models, Machine Learning (Springer), 2022.

• Global metric 

Biasௐభ
𝑓 𝐺 = 𝑊ଵ 𝑃  |ீୀ, 𝑃  |ீୀଵ = න 𝑏𝑖𝑎𝑠௧


ଵ



𝑓 𝐺 𝑑𝑡 

• Marginal bias game
𝑣௦ 𝑆; 𝑓 = 𝐵𝑖𝑎𝑠ௐ

𝑣ொ(𝑆; 𝑓, 𝑋) 𝑋, 𝐺

• Bias explanations
𝜑 𝑣௦ 𝑆; 𝑓 , 𝑖 ∈ 𝑁 = {1,2, … 𝑁}



3. Marginal feature attributions for ML 
models with oblivious trees



Individual feature attributions

Input

• 𝑋, 𝑌 , where 𝑋 = (𝑋ଵ, … , 𝑋) are features, 𝑌 ∈ ℝ a response variable on (Ω, ℱ, ℙ).

• 𝑥 → 𝑓 𝑥 = 𝔼[𝑌|𝑋 = 𝑥] or ℙ(𝑌 = 1|𝑋 = 𝑥)  (regressor or classification score).

(Individual) Model explainer

Quantifies the contribution of an observation 𝑥 = 𝑥ଵ, 𝑥ଶ, … 𝑥 ∼ 𝑋 to the value 𝑓(𝑥). 

 ℝ ∋ 𝑥 → 𝐸 𝑥; 𝑓, 𝑋, ℐ = 𝐸ଵ, 𝐸ଶ, … 𝐸 ∈ ℝ .

Here the model 𝑓, the random vector 𝑋 and model implementation ℐ serve as parameters.



ML games and values
ML games

𝑣ா 𝑆, 𝑥; 𝑋, 𝑓 =  𝔼 𝑓 𝑋ௌ, 𝑋ିௌ 𝑋ௌ = 𝑥௦   (conditional game, “true−to−the data”)

𝑣ொ 𝑆, 𝑥; 𝑋, 𝑓 = 𝔼 𝑓 𝑥ௌ, 𝑋ିௌ   (marginal game, “true-to-the-model”)

Game value (marginalist form)

 ℎ 𝑁, 𝑣 = ∑ 𝑤 𝑆, |𝑁| ⋅ 𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆  ௌ⊆ே∖ 

Conditional and marginal explanations of 𝑓 for feature 𝑋 at 𝑥 are defined:

• 𝑥 → ℎ∗
ா 𝑥 = ℎ 𝑁, 𝑣∗

ா(⋅, 𝑥; 𝑓) ∈ ℝ

•  𝑥 → ℎ∗
ொ 𝑥 = ℎ 𝑁, 𝑣∗

ொ(⋅, 𝑥; 𝑓) ∈ ℝ

𝑌 = 𝑓 𝑋 = 𝑋ଶ𝑋ଷ ,  𝑋ଶ = sin 𝜋𝑋ଵ + 𝜖



Obstacles in computing game-theoretic feature attributions

 Features are almost never independent. 
     
     Conditional feature attributions (based on 𝑣ா) often differ from the marginal ones (based on 𝑣ொ).

 Remedy: Grouping features based on dependencies and using coalitional value (e.g. the 
Owen value) unifies the two frameworks and yields more stable explanations. 

     [M.-Kotsiopoulos-Filom-Ravi Kannan (2024)]

 Formulas for game values usually have exponentially many terms.

       E.g. the formula for Shapley value has 2ିଵ terms (𝑛 can be ≥ 100 in a credit card risk model)

 Remedy: Monte-Carlo approximation. [Štrumbelj-Kononenko 2010 & 2014], 
                                                                                 [Kotsiopoulos-Miroshnikov-F.-Ravi Kannan 2023]. 
 Remedy: Focusing on a specific type of models.



Solution in a special case: oblivious trees 

• ML tree ensembles 𝑓 𝑥 = ∑ 𝒯(𝑥) , 𝒯 is a tree (a simple function).

• 𝑓 → ℎ[𝑣ொ(𝑓)]  = ∑ ℎ 𝑣ொ 𝒯 due to linearity

• Type of trees:

• The CatBoost library utilizes oblivious (symmetric) decision trees as base learners 
     [Dorogush-Ershov-Gulin 2018]. 
• Despite this constraint, ensembles of symmetric trees demonstrate competitive predictive power
     [Ferov-Modrý 2016], [Hancock-Khoshgoftaar 2020]. 



Main result: a model-specific and inherently-interpretable approach 

[Filom-M.-Kotsiopoulos-Ravi Kannan 2023] (10.3934/fods.2024021) 

Let 𝑇 be an ensemble of symmetric decision trees of depth 𝑑 trained on a dataset D.         
(Typically, D is large and d = log ℒ ≤ 10). Then:

Precomputation. There is an explicit formula for marginal game  values of T solely in  terms of the model’s 
parameters with complexity 𝑂(ℒଵ.) per leaf. 

Computation. Based on this analytic solution, we designed an algorithm for estimating marginal feature 
attributions of 𝒯 according to certain precomputed look-up tables. 

Complexity. The algorithm is fast. The computation complexity of the is 𝑂( 𝑇 ⋅ 𝑑) and accurate (variance of 
error ∼ 1/|𝐷|). It does not depend on the background dataset!

Generalization. The formula can be generalized for an axiomatically characterized family of game values 
(including variants of Shapley such as Banzhaf or Owen). 

Proof. combinatorial analysis + null player property (features that do not appear in the tree do not play).



What is special about oblivious (symmetric) trees?

• For a tree 𝒯, marginal feature attributions 
based on a linear game value are piecewise 
constant, but only with respect to a grid 
partition 𝒫(𝒯)෫ , which is often finer than 
the tree’s partition 𝒫(𝒯). They coincide 
when 𝒯 is symmetric.

• Game value computations can be simplified 
by exploiting the symmetry. 
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