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1. Motivation
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Motivation

• Contemporary predictive ML models are complex: Neural Networks 
(NN), Gradient Boosting Machines (GBM), Semi-supervised methods

• Interpretability is crucial for business adoption, regulatory oversight, 
and human acceptance and trust: Banking, Insurance, Healthcare

• Accuracy may come at the expense of interpretability [P. Hall, 2018].

Model 
Complexity

• ML models, and strategies that rely on ML models, are subject to laws 
and regulations (e.g. ECOA, EEOA).

• Financial institutions in the United States (US) are required under the 
ECOA to notify declined or negatively impacted applicants of the main 
factors that led to the adverse action.

• Common approaches: Post-hoc individualize model explanations, self-
interpretable models.

Regulatory 
requirements



Setup
Input

• 𝑋, 𝑌 , where 𝑋 = (𝑋ଵ, … , 𝑋) are features, 𝑌 ∈ ℝ a response variable on (Ω, ℱ, ℙ).

• 𝑥 → 𝑓 𝑥 = 𝔼[𝑌|𝑋 = 𝑥] or ℙ(𝑌 = 1|𝑋 = 𝑥)  (regressor or classification score).

• 𝑃 a pushforward probability measure, 𝑃 𝐴 = ℙ(𝑋 ∈ 𝐴), ℬ(ℝ) .
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• 𝑃 a pushforward probability measure, 𝑃 𝐴 = ℙ(𝑋 ∈ 𝐴), ℬ(ℝ) .

(Individual or local) Model explainer

Quantifies the contribution of an observation 𝑥 = 𝑥ଵ, 𝑥ଶ, … 𝑥 ∼ 𝑋 to the value 𝑓(𝑥). 

 ℝ ∋ 𝑥 → 𝐸 𝑥; 𝑓, 𝑋, ℐ = 𝐸ଵ, 𝐸ଶ, … 𝐸 ∈ ℝ .

Here the model 𝑓, the random vector 𝑋 and model implementation ℐ serve as parameters.
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Example

Linear model: 𝑓 𝑥 = 𝑎ଵ𝑥ଵ + 𝑎ଶ𝑥ଶ … + 𝑎𝑥.  Set  𝐸 𝑥; 𝑓, 𝑋 = 𝑎 𝑥 − 𝔼 𝑋 , 𝑖 ∈ 𝑁 = {1,2, … 𝑛}.



Example: image classification feature attribution
[Ribeiro et al. “Why should I trust you?”]
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Games and game values

• Cooperative game 𝑁, 𝑣 .

o 𝑁 = 1,2, … , 𝑛 , set of players.

o 𝑣 is utility. 𝑣(𝑆) is the worth of the coalition 𝑆 ⊆ 𝑁.

• Game value. A map 𝑁, 𝑣 → ℎ 𝑁, 𝑣 = ℎ 𝑁, 𝑣 ୀଵ
 ∈ ℝ.

Game value in the marginalist form

ℎ 𝑁, 𝑣 = ∑ 𝑤 𝑆, 𝑛 ⋅ 𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆  ௌ⊆ே∖ 

ℎ is linear (LN), symmetric (SM). 
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ℎ is linear (LN), symmetric (SM). 

Example: Shapley value [Shapley, 1953] 

𝜑 𝑣 = ∑
ୱ! ି௦ିଵ !

!
𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆ௌ⊆ே∖  , linear, symmetric, efficient (EF)  ∑ 𝜑 𝑁, 𝑣 = 𝑣(𝑁) .



Game theoretic approach for ML models

Marginal and conditional deterministic games

Given (𝑥, 𝑋, 𝑓) and 𝑆 ⊂ 𝑁 = {1,2, … 𝑛}

• 𝑣∗
ா 𝑆, 𝑥; 𝑋, 𝑓 =  𝔼[𝑓(𝑋ௌ, 𝑋ିௌ)|𝑋ௌ = 𝑥௦],  conditional game

• 𝑣∗
ொ 𝑆, 𝑥; 𝑋, 𝑓 = 𝔼 𝑓 𝑥ௌ, 𝑋ିௌ , marginal game

Marginal and conditional (local) explanations

Given a game value ℎ[𝑁, 𝑣] conditional and marginal explanations of 𝑓 at 𝑥 are defined:

• 𝑥 → ℎ∗
ா 𝑥; 𝑓 = ℎ 𝑁, 𝑣∗

ா(⋅, 𝑥) ∈ ℝ,   𝑥 → ℎ∗
ொ 𝑥; 𝑓 = ℎ 𝑁, 𝑣∗

ொ(⋅, 𝑥) ∈ ℝ

Game theoretic approach has been explored in Štrumbelj & Kononenko (2014), Lundberg & Lee (2017)



Marginal vs conditional

Marginal game

• 𝑣∗
ொ explores the input-output relationship 𝑥, 𝑓 𝑥 , 𝑥 ∼ 𝑋.

• ℎ[𝑁, 𝑣∗
ொ] are “true-to-the-model”  𝑓(𝑥).

Conditional game 

• 𝑣∗
ா explores the contribution of 𝑥 ∼ 𝑋 in the context 

of the observational graph  Ω ∋ 𝜔 → 𝑋 𝜔 , 𝑓 𝑋 𝜔 .

• ℎ[𝑁, 𝑣∗
ா] are “true-to-the-data” 𝑓 𝑋 .

𝑌 = 𝑓 𝑋 = 𝑋ଶ𝑋ଷ,  𝑋ଶ = sin 𝜋𝑋ଵ + 𝜖
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ML GamesRandom games and linear operator

Random games

• 𝑓 → 𝑣ா ⋅, 𝑥; 𝑋, 𝑓 = 𝑣∗
ா 𝑆, 𝑥; 𝑋, 𝑓 |௫ୀ ∈ (Ω, ℱ, ℙ)

• 𝑓 → 𝑣ொ ⋅, 𝑥; 𝑋, 𝑓 = 𝑣∗
ொ 𝑆, 𝑥; 𝑋, 𝑓 |௫ୀ ∈ (Ω, ℱ, ℙ)

Linearity

For 𝑣 ∈ 𝑣ா, 𝑣ொ and two models 𝑓, 𝑔

• 𝑣 𝑆; 𝑋, 𝛼 ⋅ 𝑓 + 𝑔 → 𝛼 ⋅ 𝑣 𝑆; 𝑋, 𝑓 + 𝑣 𝑆; 𝑋, 𝑔 , 𝑆 ⊆ 𝑁

• ℎ 𝑁, 𝑣  ⋅ ; 𝑋, 𝛼 ⋅ 𝑓 + 𝑔 → 𝛼 ⋅ ℎ[𝑁, 𝑣( ⋅ ; 𝑋, 𝑓)]+ ℎ[𝑁, 𝑣( ⋅ ; 𝑋, 𝑔)]
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ML GamesRandom games and operators

Given a game value

ℎ 𝑁, 𝑣 =  𝑤 𝑆, 𝑛 ⋅ 𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆

ௌ⊆ே∖ 

, 𝑖 ∈ 𝑁 = {1,2, … 𝑛}

define linear operators

• ℰ̅ா 𝑓 = 𝐿ଶ ℝ, 𝑃 ↦ 𝐿ଶ Ω, ℙ    by  ℰ̅
ா 𝑓 ≔ ℎ 𝑁, 𝑣ா ⋅; 𝑋, 𝑓 , 𝑖 ∈ 𝑁

• ℰ̅ொ 𝑓 = 𝐿ଶ ℝ, 𝑃෨ ↦ 𝐿ଶ Ω, ℙ  by    ℰ̅
ொ 𝑓 ≔ ℎ 𝑁, 𝑣ொ ⋅; 𝑋, 𝑓 , 𝑖 ∈ 𝑁

where 𝑃෨ =
ଵ

ଶ
∑ 𝑃ೄ

⊗ 𝑃షೄௌ⊆ே .

Note: 𝑃෨ = 𝑃 if features are independent.
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Conditional

Continuity I

Theorem [AM, Kotsiopoulos, Filom, Ravi Kannan (2022)]

• ℰ̅ா, 𝐿ଶ 𝑃 is a well-defined bounded linear operator such that

ℰ̅ா 𝑓ଵ − ℰ̅ா 𝑓ଶ మ(ℙ) ≤ 𝐶(𝑤, 𝑛) ⋅ 𝑓ଵ − 𝑓ଶ మ 

If ℎ is efficient then 𝐶 𝑤, 𝑛 = 1.

• ℰ̅ொ, 𝐿ଶ 𝑃෨ is a well-defined bounded linear operator such that

ℰ̅ொ 𝑓ଵ − ℰ̅ொ 𝑓ଶ మ(ℙ) ≤ 𝐶ሚ(𝑤, 𝑛) ⋅ 𝑓ଵ − 𝑓ଶ మ ෨

Note: 𝑓ଵ 𝑋 ≈ 𝑓ଶ 𝑋 in 𝐿ଶ ℙ ⇒ ℎ 𝑣ா 𝑓ଵ ≈ ℎ 𝑣ா 𝑓ଶ in 𝐿ଶ(ℙ).
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Conditional
Rashomon effect on marginal explanations

Synthetic model



Challenges 

 Features are almost never independent. 

 Conditional feature attributions (based on 𝑣ா) often differ from the marginal ones (based on 𝑣ொ).

Questions

When marginal explanations are stable in 𝐿ଶ(𝑃)? How to mitigate instabilities (if any)?

 Can the two type of explanations be reunited?

To answer these questions, it is necessary to consider the relationship between 

𝑃෨ =
ଵ

ଶ
∑ 𝑃ೄ

⊗ 𝑃షೄௌ⊆ே and 𝑃. Note: 𝑃෨ = 𝑃 only when features are independent.
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Marginal operator instability

Lemma [AM, Kotsiopoulos, Filom, Ravi Kannan (2022)]

• The marginal game 𝑣ொ, 𝐻 on 𝐻 = 𝐿ଶ 𝑃෨ /𝐻
, ‖ ⋅ ‖మ() is well-defined if and only if  𝑃෨ ≪ 𝑃.

• If 𝑃෨ ≪ 𝑃, 𝐻 = 𝐿ଶ 𝑃෨ , ‖ ⋅ ‖మ()

• If 𝑃෨ ≪ 𝑃 then 𝑟 ≔
ௗ ෨

ௗ 
∈ 𝐿ଵ(𝑃) controls the strength of dependencies in the sense of:

𝑊ଵ 𝑃෨, 𝑃 ≤ ∫ 𝑥 ⋅ 𝑟 𝑥 − 1  𝑃 𝑑𝑥
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Marginal operator instability

Continuity II

Theorem (bounded)  [AM, Kotsiopoulos, Filom, Ravi Kannan (2023,revised)]

Suppose 𝑃෨ ≪ 𝑃

Suppose 𝑟 ∈ 𝐿ஶ(𝑃). Then ℰ̅ொ, 𝐻 is a well-defined bounded, linear operator satisfying

ℰ̅
ொ 𝑓

మ(ℙ)
≤ 1 + 2 ⋅ 𝑟 − 1 ಮ 

⋅  |𝑤(|𝑆|, 𝑁)|

ௌ⊂ே∖{}

⋅ 𝑓 మ 
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Marginal operator instabilityTheorem (unbounded) [AM, Kotsiopoulos, Filom, Ravi Kannan (2024,revised)]

Suppose 𝑃෨ ≪ 𝑃.
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Marginal operator instabilityTheorem (unbounded) [AM, Kotsiopoulos, Filom, Ravi Kannan (2024,revised)]

Suppose 𝑃෨ ≪ 𝑃.
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Explanations under dependencies

Mitigation. Grouping features as a stabilization mechanism.

Computing explanations of groups formed by dependencies (e.g. variable clustering tree)

• Unifies marginal and conditional explanations and achieve stability of marginal explanations

• Removes splits of explanations across dependencies
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Quotient game explainers

Quotient game explainers

Given 𝒫 = {𝑆ଵ, 𝑆ଶ, … 𝑆}, treat each group predictor 𝑋ௌೕ
as a player 𝑗 ∈ {1,2, … , 𝑚}

Quotient game: 𝑣𝒫 𝐴 = 𝑣 ⋃∈𝑆 , 𝐴 ⊂ 𝑀 = 1,2, … 𝑚

Quotient game explainers: 𝑓 ↦ ℎ 𝑀, 𝑣𝒫(𝑓) , 𝑣 ∈ {𝑣ா, 𝑣ொ}

Mitigation. Grouping features as a stabilization mechanism.
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Quotient game explainers: 𝑓 ↦ ℎ 𝑀, 𝑣 𝒫(𝑓) , 𝑣 ∈ {𝑣ா, 𝑣ொ}

Proposition [AM, Kotsiopoulos, Filom, Ravi Kannan (2022)] 

• if groups {𝑋ௌభ
, 𝑋ௌమ

, … , 𝑋ௌ
} are independent, ℎ[𝑣] is linear,

ℎ 𝑀, 𝑣ா,𝒫(𝑓) = ℎ 𝑀, 𝑣ொ,𝒫(𝑓) and hence continuous.

• Let 𝑄 =∪∈ 𝑆.  If 𝑟 =
ௗ ೂಲ

⊗షೂಲ

ௗ
is bounded for 𝐴 ⊆ 𝑀, then

𝐻 ∋ 𝑓 → ℎ 𝑀, 𝑣ொ,𝒫 𝑓 ∈ 𝐿ଶ(𝑃) is bounded with the bound ∼ max
⊂ெ 

 𝑟 − 1 .

Mitigation. Grouping features as a stabilization mechanism.
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