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Motivation

• Contemporary predictive ML models are complex: Neural Networks 
(NN), Gradient Boosting Machines (GBM), Semi-supervised methods

• Interpretability is crucial for business adoption, regulatory oversight, 
and human acceptance and trust: Banking, Insurance, Healthcare

• Accuracy may come at the expense of interpretability [P. Hall, 2018].

Model 
Complexity

• ML models, and strategies that rely on ML models, are subject to laws 
and regulations (e.g. ECOA, EEOA).

• Financial institutions in the United States (US) are required under the 
ECOA to notify declined or negatively impacted applicants of the main 
factors that led to the adverse action.

• Common approaches: Post-hoc individualize model explanations, self-
interpretable models.

Regulatory 
requirements



Setup
Input

• 𝑋, 𝑌 , where 𝑋 = (𝑋ଵ, … , 𝑋௡) are features, 𝑌 ∈ ℝ a response variable on (Ω, ℱ, ℙ).

• 𝑥 → 𝑓 𝑥 = 𝔼[𝑌|𝑋 = 𝑥] or ℙ(𝑌 = 1|𝑋 = 𝑥)  (regressor or classification score).

• 𝑃௑ a pushforward probability measure, 𝑃௑ 𝐴 = ℙ(𝑋 ∈ 𝐴), ℬ(ℝ௡) .
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• 𝑃௑ a pushforward probability measure, 𝑃௑ 𝐴 = ℙ(𝑋 ∈ 𝐴), ℬ(ℝ௡) .

(Individual or local) Model explainer

Quantifies the contribution of an observation 𝑥 = 𝑥ଵ, 𝑥ଶ, … 𝑥௡ ∼ 𝑋 to the value 𝑓(𝑥). 

 ℝ௡ ∋ 𝑥 → 𝐸 𝑥; 𝑓, 𝑋, ℐ௙ = 𝐸ଵ, 𝐸ଶ, … 𝐸௡ ∈ ℝ௡ .

Here the model 𝑓, the random vector 𝑋 and model implementation ℐ௙ serve as parameters.
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Here the model 𝑓, the random vector 𝑋 and model implementation ℐ௙ serve as parameters.

Example

Linear model: 𝑓 𝑥 = 𝑎ଵ𝑥ଵ + 𝑎ଶ𝑥ଶ … + 𝑎௡𝑥௡.  Set  𝐸௜ 𝑥; 𝑓, 𝑋 = 𝑎௜ 𝑥௜ − 𝔼 𝑋௜ , 𝑖 ∈ 𝑁 = {1,2, … 𝑛}.



Example: image classification feature attribution
[Ribeiro et al. “Why should I trust you?”]
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Games and game values

• Cooperative game 𝑁, 𝑣 .

o 𝑁 = 1,2, … , 𝑛 , set of players.

o 𝑣 is utility. 𝑣(𝑆) is the worth of the coalition 𝑆 ⊆ 𝑁.

• Game value. A map 𝑁, 𝑣 → ℎ 𝑁, 𝑣 = ℎ௜ 𝑁, 𝑣 ௜ୀଵ
௡ ∈ ℝ௡.

Game value in the marginalist form

ℎ௜ 𝑁, 𝑣 = ∑ 𝑤 𝑆, 𝑛 ⋅ 𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆  ௌ⊆ே∖ ௜

ℎ is linear (LN), symmetric (SM). 
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ℎ is linear (LN), symmetric (SM). 

Example: Shapley value [Shapley, 1953] 

𝜑௜ 𝑣 = ∑
ୱ! ௡ି௦ିଵ !

௡!
𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆ௌ⊆ே∖ ௜ , linear, symmetric, efficient (EF)  ∑ 𝜑௜ 𝑁, 𝑣 = 𝑣(𝑁)௜ .



Game theoretic approach for ML models

Marginal and conditional deterministic games

Given (𝑥, 𝑋, 𝑓) and 𝑆 ⊂ 𝑁 = {1,2, … 𝑛}

• 𝑣∗
஼ா 𝑆, 𝑥; 𝑋, 𝑓 =  𝔼[𝑓(𝑋ௌ, 𝑋ିௌ)|𝑋ௌ = 𝑥௦],  conditional game

• 𝑣∗
ொ 𝑆, 𝑥; 𝑋, 𝑓 = 𝔼 𝑓 𝑥ௌ, 𝑋ିௌ , marginal game

Marginal and conditional (local) explanations

Given a game value ℎ[𝑁, 𝑣] conditional and marginal explanations of 𝑓 at 𝑥 are defined:

• 𝑥 → ℎ∗
஼ா 𝑥; 𝑓 = ℎ 𝑁, 𝑣∗

஼ா(⋅, 𝑥) ∈ ℝ௡,   𝑥 → ℎ∗
ொ 𝑥; 𝑓 = ℎ 𝑁, 𝑣∗

ொ(⋅, 𝑥) ∈ ℝ௡

Game theoretic approach has been explored in Štrumbelj & Kononenko (2014), Lundberg & Lee (2017)



Marginal vs conditional

Marginal game

• 𝑣∗
ொ explores the input-output relationship 𝑥, 𝑓 𝑥 , 𝑥 ∼ 𝑋.

• ℎ[𝑁, 𝑣∗
ொ] are “true-to-the-model”  𝑓(𝑥).

Conditional game 

• 𝑣∗
஼ா explores the contribution of 𝑥 ∼ 𝑋 in the context 

of the observational graph  Ω ∋ 𝜔 → 𝑋 𝜔 , 𝑓 𝑋 𝜔 .

• ℎ[𝑁, 𝑣∗
஼ா] are “true-to-the-data” 𝑓 𝑋 .

𝑌 = 𝑓 𝑋 = 𝑋ଶ𝑋ଷ,  𝑋ଶ = sin 𝜋𝑋ଵ + 𝜖
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ML GamesRandom games and linear operator

Random games

• 𝑓 → 𝑣஼ா ⋅, 𝑥; 𝑋, 𝑓 = 𝑣∗
஼ா 𝑆, 𝑥; 𝑋, 𝑓 |௫ୀ௑ ∈ (Ω, ℱ, ℙ)

• 𝑓 → 𝑣ொ ⋅, 𝑥; 𝑋, 𝑓 = 𝑣∗
ொ 𝑆, 𝑥; 𝑋, 𝑓 |௫ୀ௑ ∈ (Ω, ℱ, ℙ)

Linearity

For 𝑣 ∈ 𝑣஼ா, 𝑣ொ and two models 𝑓, 𝑔

• 𝑣 𝑆; 𝑋, 𝛼 ⋅ 𝑓 + 𝑔 → 𝛼 ⋅ 𝑣 𝑆; 𝑋, 𝑓 + 𝑣 𝑆; 𝑋, 𝑔 , 𝑆 ⊆ 𝑁

• ℎ௜ 𝑁, 𝑣  ⋅ ; 𝑋, 𝛼 ⋅ 𝑓 + 𝑔 → 𝛼 ⋅ ℎ௜[𝑁, 𝑣( ⋅ ; 𝑋, 𝑓)]+ ℎ௜[𝑁, 𝑣( ⋅ ; 𝑋, 𝑔)]
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ML GamesRandom games and operators

Given a game value

ℎ௜ 𝑁, 𝑣 = ෍ 𝑤 𝑆, 𝑛 ⋅ 𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆

ௌ⊆ே∖ ௜

, 𝑖 ∈ 𝑁 = {1,2, … 𝑛}

define linear operators

• ℰ̅஼ா 𝑓 = 𝐿ଶ ℝ௡, 𝑃௑ ↦ 𝐿ଶ Ω, ℙ ௡   by  ℰ௜̅
஼ா 𝑓 ≔ ℎ௜ 𝑁, 𝑣஼ா ⋅; 𝑋, 𝑓 , 𝑖 ∈ 𝑁

• ℰ̅ொ 𝑓 = 𝐿ଶ ℝ௡, 𝑃෨௑ ↦ 𝐿ଶ Ω, ℙ ௡ by    ℰ௜̅
ொ 𝑓 ≔ ℎ௜ 𝑁, 𝑣ொ ⋅; 𝑋, 𝑓 , 𝑖 ∈ 𝑁

where 𝑃෨௑ =
ଵ

ଶ೙
∑ 𝑃௑ೄ

⊗ 𝑃௑షೄௌ⊆ே .

Note: 𝑃෨௑ = 𝑃௑ if features are independent.
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Conditional

Continuity I

Theorem [AM, Kotsiopoulos, Filom, Ravi Kannan (2022)]

• ℰ̅஼ா, 𝐿ଶ 𝑃௑ is a well-defined bounded linear operator such that

ℰ̅஼ா 𝑓ଵ − ℰ̅஼ா 𝑓ଶ ௅మ(ℙ) ≤ 𝐶(𝑤, 𝑛) ⋅ 𝑓ଵ − 𝑓ଶ ௅మ ௉೉

If ℎ is efficient then 𝐶 𝑤, 𝑛 = 1.

• ℰ̅ொ, 𝐿ଶ 𝑃෨௑ is a well-defined bounded linear operator such that

ℰ̅ொ 𝑓ଵ − ℰ̅ொ 𝑓ଶ ௅మ(ℙ) ≤ 𝐶ሚ(𝑤, 𝑛) ⋅ 𝑓ଵ − 𝑓ଶ ௅మ ௉෨೉

Note: 𝑓ଵ 𝑋 ≈ 𝑓ଶ 𝑋 in 𝐿ଶ ℙ ⇒ ℎ 𝑣஼ா 𝑓ଵ ≈ ℎ 𝑣஼ா 𝑓ଶ in 𝐿ଶ(ℙ).
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Conditional
Rashomon effect on marginal explanations

Synthetic model



Challenges 

 Features are almost never independent. 

 Conditional feature attributions (based on 𝑣஼ா) often differ from the marginal ones (based on 𝑣ொ).

Questions

When marginal explanations are stable in 𝐿ଶ(𝑃௑)? How to mitigate instabilities (if any)?

 Can the two type of explanations be reunited?

To answer these questions, it is necessary to consider the relationship between 

𝑃෨௑ =
ଵ

ଶ೙
∑ 𝑃௑ೄ

⊗ 𝑃௑షೄௌ⊆ே and 𝑃௑. Note: 𝑃෨௑ = 𝑃௑ only when features are independent.
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Marginal operator instability

Lemma [AM, Kotsiopoulos, Filom, Ravi Kannan (2022)]

• The marginal game 𝑣ொ, 𝐻௑ on 𝐻௑ = 𝐿ଶ 𝑃෨௑ /𝐻௑
଴, ‖ ⋅ ‖௅మ(௉೉) is well-defined if and only if  𝑃෨௑ ≪ 𝑃௑.

• If 𝑃෨௑ ≪ 𝑃௑, 𝐻௑ = 𝐿ଶ 𝑃෨௑ , ‖ ⋅ ‖௅మ(௉೉)

• If 𝑃෨௑ ≪ 𝑃௑ then 𝑟௑ ≔
ௗ ௉෨೉

ௗ ௉೉
∈ 𝐿ଵ(𝑃௑) controls the strength of dependencies in the sense of:

𝑊ଵ 𝑃෨௑, 𝑃௑ ≤ ∫ 𝑥 ⋅ 𝑟௑ 𝑥 − 1  𝑃௑ 𝑑𝑥
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Marginal operator instability

Continuity II

Theorem (bounded)  [AM, Kotsiopoulos, Filom, Ravi Kannan (2023,revised)]

Suppose 𝑃෨௑ ≪ 𝑃௑

Suppose 𝑟௑ ∈ 𝐿ஶ(𝑃௑). Then ℰ̅ொ, 𝐻௑ is a well-defined bounded, linear operator satisfying

ℰ௜̅
ொ 𝑓

௅మ(ℙ)
≤ 1 + 2 ⋅ 𝑟௑ − 1 ௅ಮ ௉೉

⋅ ෍ |𝑤(|𝑆|, 𝑁)|

ௌ⊂ே∖{௜}

⋅ 𝑓 ௅మ ௉೉
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Marginal operator instabilityTheorem (unbounded) [AM, Kotsiopoulos, Filom, Ravi Kannan (2024,revised)]

Suppose 𝑃෨௑ ≪ 𝑃௑.


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Marginal operator instabilityTheorem (unbounded) [AM, Kotsiopoulos, Filom, Ravi Kannan (2024,revised)]

Suppose 𝑃෨௑ ≪ 𝑃௑.







Public

Explanations under dependencies

Mitigation. Grouping features as a stabilization mechanism.

Computing explanations of groups formed by dependencies (e.g. variable clustering tree)

• Unifies marginal and conditional explanations and achieve stability of marginal explanations

• Removes splits of explanations across dependencies
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Quotient game explainers

Quotient game explainers

Given 𝒫 = {𝑆ଵ, 𝑆ଶ, … 𝑆௠}, treat each group predictor 𝑋ௌೕ
as a player 𝑗 ∈ {1,2, … , 𝑚}

Quotient game: 𝑣𝒫 𝐴 = 𝑣 ⋃௝∈஺𝑆௝ , 𝐴 ⊂ 𝑀 = 1,2, … 𝑚

Quotient game explainers: 𝑓 ↦ ℎ௝ 𝑀, 𝑣𝒫(𝑓) , 𝑣 ∈ {𝑣஼ா, 𝑣ொ}

Mitigation. Grouping features as a stabilization mechanism.
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Quotient game explainers

Given 𝒫 = {𝑆ଵ, 𝑆ଶ, … 𝑆௠}, treat each group predictor 𝑋ௌೕ
as a player 𝑗 ∈ {1,2, … , 𝑚}

Quotient game: 𝑣𝒫 𝐴 = 𝑣 ⋃௝∈஺𝑆௝ , 𝐴 ⊂ 𝑀 = 1,2, … 𝑚

Quotient game explainers: 𝑓 ↦ ℎ௝ 𝑀, 𝑣 𝒫(𝑓) , 𝑣 ∈ {𝑣஼ா, 𝑣ொ}

Proposition [AM, Kotsiopoulos, Filom, Ravi Kannan (2022)] 

• if groups {𝑋ௌభ
, 𝑋ௌమ

, … , 𝑋ௌ೘
} are independent, ℎ[𝑣] is linear,

ℎ௝ 𝑀, 𝑣஼ா,𝒫(𝑓) = ℎ௝ 𝑀, 𝑣ொ,𝒫(𝑓) and hence continuous.

• Let 𝑄஺ =∪௝∈஺ 𝑆௝.  If 𝑟஺ =
ௗ ௉೉ೂಲ

⊗௉೉షೂಲ

ௗ௉೉
is bounded for 𝐴 ⊆ 𝑀, then

𝐻௑ ∋ 𝑓 → ℎ௝ 𝑀, 𝑣ொ,𝒫 𝑓 ∈ 𝐿ଶ(𝑃௑) is bounded with the bound ∼ max
஺⊂ெ 

 𝑟஺ − 1 .

Mitigation. Grouping features as a stabilization mechanism.
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