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Motivation

e Contemporary predictive ML models are complex: Neural Networks
(NN), Gradient Boosting Machines (GBM), Semi-supervised methods

M Od e' e Interpretability is crucial for business adoption, regulatory oversight,
and human acceptance and trust: Banking, Insurance, Healthcare

[ ]
CO m p I EXIty e Accuracy may come at the expense of interpretability [P. Hall, 2018].

e ML models, and strategies that rely on ML models, are subject to laws
and regulations (e.g. ECOA, EEOA).

Regu I ato ry e Financial institutions in the United States (US) are required under the
. ECOA to notify declined or negatively impacted applicants of the main
requirements

factors that led to the adverse action.

e Common approaches: Post-hoc individualize model explanations, self-
interpretable models.
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Setup

Input
* (X,Y), where X = (X4, ..., X,,) are features, Y € R a response variable on (Q, F, P).
* x- f(x) =E[Y|X =x] or P(Y = 1|X = x) (regressor or classification score).

* Py a pushforward probability measure, Py(A4) = P(X € A), B(R™).
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Example

Linear model: f(x) = a;x; + ayx, ... + ayx,. Set E;(x; f,X) = a;(x; — E[X;]),i € N ={1,2,..n}.



Example: image classification feature attribution

[Ribeiro et al. “Why should | trust you?”]
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(a) Original Image 7 (b) Explaining Electric guitar (c) Explaining Acoustic guitar  (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top
3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21)
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(a) Husky classified as wolf (b) Explanation

Figure 11: Raw data and explanation of a bad
model’s prediction in the “Husky vs Wolf” task.



Games and game values

Cooperative game (N, v).
o N ={1,2,..,n}, set of players.

o v is utility. v(S) is the worth of the coalition S € N.

Game value. Amap (N,v) = h[N,v] = {h;[N, v]}}L; € R™
Game value in the marginalist form

hi[N,v] = Xsempw(S,n) - (v(S Ui)— v(S))
h is linear (LN), symmetric (SM).
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» Cooperative game (N, v).
o N ={1,2,..,n}, set of players.

o v is utility. v(S) is the worth of the coalition S € N.

Game value. Amap (N,v) = h[N,v] = {h;[N, v]}}L; € R™ \
Game value in the marginalist form

hi[N,v] = Xsempw(S,n) - (v(S Ui)— v(S))
k h is linear (LN), symmetric (SM). j

Example: Shapley value [Shapley, 1953]

p;[v] = ngN\{i}W(v(S Ui) — v(S)), linear, symmetric, efficient (EF) Y; @;[N, v] = v(N).
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Game theoretic approach for ML models

Game theoretic approach has been explored in Strumbelj & Kononenko (2014), Lundberg & Lee (2017)

Marginal and conditional deterministic games
Given (x,X,f)and S c N = {1,2,...n}
- vE(S,x; X, f) = E[f(Xs,X_g)|Xs = x,], conditional game

- vME(S,x; X, f) = E[f (x5, X_s)], marginal game

Marginal and conditional (local) explanations
Given a game value h[N, v] conditional and marginal explanations of f at x are defined:

« x> h¢E(x;f) = h[N,vEE(,x)] € R®, x = hME(x; f) = h[N, vME(,, x)] € R®



Marginal vs conditional

Marginal game

- vME explores the input-output relationship (x, f(x)), x ~ X.

« h[N,vME] are “true-to-the-model” f(x).

Conditional game

« vLE explores the contribution of x ~ X in the context

of the observational graph Q3 w — (X(a)),f(X(w))).

* h[N, v E] are “true-to-the-data” f(X).

Explanations

Y = f(X) = X2X3, X2 = Sin(nXl) + €

& o SHAP(f.vE) ¢ o
° s SHAP(f, vME) .
° ° ?—E[f]
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Random games and linear operator

Random games
« fovECX ) =vEE(S, 5 X, ly=x € (Q,F,P)

* fo v xX ) = v 08,5 X, l=x € (QF,P)

Linearity
For v € {v°E, vE} and two models f, g
s v(S;X,a-f+g)oa-v(S;X,f)+v(S;X,9),SEN

* WINv( X a-f+g)] = a-l[N,v(5X O+ k[N, v(-5 X, 9)]
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Random games and operators

Given a game value

h;[N,v] = Z w(S,n) - (v(Sui)—v(S)),i e N={12,..n}
SCN\{i}

define linear operators

» EE[f] = L*(R", Py) » L2(QP)" by EF[f]= [N, vE(;X,f)li€eN

« EME[f] = I2(R™, Py) = [2(Q,P)* by EME[f]:=hN,vME(;X,f)],i €N
where pX = ZinZSQN PXS ® PX—S'

Note: Py = Py if features are independent.
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Continuity |

Note: f;(X) = f,(X) in L*(P) = h[v*(f)] = h[v°F ()] in L*(PP).
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Rashomon effect on marginal explanations

Synthetic model

Y = f*(Xl,Xz,Xg) + €3 = 3X2X3 + €3

Z ~ Unif(-1,1)
X1=Z+¢, € ~N(0,0.05),
Xy = V2sin(Z(n/4)) + €2, €3 ~ N(0,0.05),
X3 ~Unif([-1,-0.5] U[0.5,1]).

Explanations

Explanations

s odo  ai
X

(a) Explanations 1 vs X;.

ad0
Xy

(¢) Differences of predictions vs X7.
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(b) Explanations 2 vs Xa.
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Challenges
J Features are almost never independent.

) Conditional feature attributions (based on v°E) often differ from the marginal ones (based on v™£).

Questions

) When marginal explanations are stable in L?(Px)? How to mitigate instabilities (if any)?

) Can the two type of explanations be reunited?

To answer these questions, it is necessary to consider the relationship between

P, = ZinZSgN Py, ® Px_g and Px. Note: P, = Py only when features are independent.



Lemma [AM, Kotsiopoulos, Filom, Ravi Kannan (2022)]
* The marginal game (vME, Hy) on Hy = (L*(Px)/Hy, || - ”LZ(PX)) is well-defined if and only if Py <« Py.
e |If ﬁX < Px, HX = (Lz(ﬁx), ” . ”LZ(PX))

e If Py & Pythenry := % € L'(Py) controls the strength of dependencies in the sense of:
X

Wl(ﬁX'PX) < [ Ix| - lrx(x) — 1| Px(dx)

supp(Py}
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Continuity Il
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Theorem (unbounded) [AM, Kotsiopoulos, Filom, Ravi Kannan (2024, revised)]

Suppose Py «< Py.

Q Let@# S C N. Suppose that either

[PXS ®PX—S](A x B)
{ Px(AXB)

or the non-negative, well-defined Borel function

plas) = [ 14*(@s,a-5)Px_(do-s)

with values in R U {oo} is not Px-essentially bounded.
Then the map f € Hx — v"*(S; X, f) € L*(P) is unbounded.
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Theorem (unbounded) [AM, Kotsiopoulos, Filom, Ravi Kannan (2024, revised)]
Suppose Py «< Py.

Q Let@# S C N. Suppose that either
{ [PXS ®PX—S](A X B)

Px(A x B) . Px_4(B), AeBR"), BeBR™), Px(4Ax B) > o} = oo.

or the non-negative, well-defined Borel function

plas) = [ 14*(@s,a-5)Px_(do-s)

with values in R U {oo} is not Px-essentially bounded.

Then the map f € Hx — v"*(S; X, f) € L*(P) is unbounded.

0 Suppose there exist two distinct indices i,j € N such that

sup { [Px, ® Px,|(A x B)
P(Xi:Xj)(A X B)

P, (B), 4,5 € BR), Px, (A x B) > 0} = oo

Suppose that the weights in (3.7) satisfy the non-negativity condition (NN) and

Z w(S,n) > 0.

SCN\{i,j}

Then (€}, Hy), (gj’-‘””f, Hx), and (EM®, Hx) are unbounded linear operators.

(UG1)

(UG2)



Mitigation. Grouping features as a stabilization mechanism.

Computing explanations of groups formed by dependencies (e.g. variable clustering tree)
* Unifies marginal and conditional explanations and achieve stability of marginal explanations

* Removes splits of explanations across dependencies
Cluster Dendrogram
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Mitigation. Grouping features as a stabilization mechanism.

Quotient game explainers

Given P = {51, S,, ... S;u}, treat each group predictor Xs; asaplayerj € {1,2,...,m}
Quotient game: v (4) = v(UjeASj), AcM={1,2,..m}

Quotient game explainers: f - h;|M,v”(f)], v € {vE, vME}
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Mitigation. Grouping features as a stabilization mechanism.

Quotient game explainers
Given P = {S4,S,, ... S;n}, treat each group predictor ng asaplayerj € {1,2,..,m}
Quotient game: v¥'(4) = v(UjeASj), AcM={1,2,..m} =

Quotient game explainers: [ — h;|M,v" ()], v € {v°E, vME}

Abs af
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