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Introduction

* Predictive ML models, and strategies that rely on such models, are subject to laws and regulations that
ensure fairness (e.g. ECOA, EEOA).
* Examples of protected attributes: race, gender, age, ethnicity, national origin, marital status, etc.

* Tradeoff between accuracy and bias

Main steps in ML fairness

1. Fairness assessment (or bias measurement)

2. Bias mitigation



Fairness for classifier

Notation

Data (X,G,Y)
X € R", predictors
« G €{0,1} (e.g. male/female)

* Y €{0,1}, response variable

Models
* f(X) = P(Y = 1|X), trained classification score
* Yi = 1ir(x)>t), a classifier for a given threshold t € R

« ¥, aclassifier

Labels
* Non-protected class: G = 0

* Favorable outcome:Y =0



Fairness for classifier

ML bias can be viewed as an ability to differentiate between subpopulations at the level of data or outcomes

(Dwork et al 2012)

Statistical parity (Feldman et al, 2015)
P(Y=0|6=0)=P(Y =0|G =1)
Equalized odds (Hardt et al, 2015)
P(Y=0lY=y,6=0)=P(Y =0y =y,6 =1),y €{0,1}
Equal opportunity (Hardt et al, 2015)
P(Y=0Y=0G6G=0)=P(Y =0y =0,6=1)

Geometric parity for Yt* (Miroshnikov et al, 2021a)

B0y = E@), po=FE) =PEW) <tly =0)

EQUALITY EQUITY




Fairness in classifiers

Statistical parity classifier bias
bias(Y:|X,G) = |P(Y; = 0|G = 0) — P(Y; = 0|G = 1)|
Example (proxy predictor)

- X~N(5-6G,V5),P(6G=0)=P(G=1)=05
* Y ~ Bernoulli(f (X)), f(x) = logistic(5 — x)

- — P(Y=1jX) - -
0.175- 1o = ey L — P(Y,=0|G=0)-P(¥;=0|G=1)
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Fairness in classifiers

Some approaches for bias mitigation of classifiers:

*  Maximization with fairness constraints

Y*(X,G) or Y*(X) = fairgsz})((y*l(;)L(Y*,X("“i")) , or mini-max approach

Dwork et al (2012), Woodworth et al (2017), Zhang et al (2018), and many others.

Post-corrective methods (Hardt et al, 2015)

« Design randomized (equalized odds) optimal classifier Y (X, G; f) € P({0,1}) given the trained score f.

Fair dataset construction. Feldman et al, 2015 =i

Pareto efficient frontier. Schmidt and Stephens (2019), Perrone et al (2020).
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Motivation

* Explicit use of the protected attribute G is not allowed by ECOA neither in training nor prediction

* Typical bias measurements test fairness of a classifier Y;, not the regressor score f(X)

* Mitigation procedures often focus on the construction of a fair classifier Y*(X, G), not a fair model f*(X, G)
* Fair ML hyperparameter search might be computationally expensive due to retraining

* Determining the main drivers (predictors) for the model bias

Acceptable form of bias mitigation
1. Given the (regressor) model f assess the bias across subpopulation distribution of f(X)|G =k, k € {0,1}
2. Determine the main drivers for the bias X; , X5, ... X; = X;

3. Construct a post-processed model £ (X; f, X;) that does not rely on G



Model bias metrics for regressors

* At an algorithmic level, the bias can be viewed as an ability to differentiate between two subpopulations
at the level of data or outcomes.

* Bias metrics requirements:

1. Must keep track of the geometry of the model distribution Ps(x) (values control)

2. Must be consistent with a wide class of classifier fairness criteria
3. Must keep track of the sign of the bias across subpopulations
4. Must be meaningful (interpretable)
—_ 5y - —— §, CDF
— Gz4e 62, +¢ CDF !
D (62, 0252 |

An ability to differentiate vs independence:

Zo Zo+eE 2y Zote



Model bias metrics

Potential candidates

U1, U2 probability measures on a metric space Z equipped with a metric d(z4, z,).

Randomized binary classifier (RBC) based bias [Dwork et al (2012)]

M,:Z - P({0,1}), randomized classifier.

Bias , = su E, ., |[M,(0)]—E,., M, (0
d,DTV(.ul Uz) MELipl(Zr,)d,DTV){ z H1[ 2(0)] x Ilz[ 2(0)] }
H1 \ (,> H2
*  Wasserstein metric W, (optimal transport cost of p; to u, and vice verse) \\ //>\/’
/ ] 4
We (pq, pp; d) = nejig%gz){ E(z, z,)~n [d(21,2,)]%, (transport plan) = with marginals p,, u, }

* Inour application uq, 4, are Pgxy =k, kK = 0,1.

What about statistical distance such KS or mutual information between f(X) and G?



Model bias metrics

Facts

(Dwork et al 2012): if w4, u, have discrete supportsandd < 1

Biasd,DTV(,ul,uz) = Wi (g, pz; d)
(Miroshnikov et al 2021a): for any p4, 4, with supportin By (z,) and d(z1,z,) = ||z1 — 22||

Biasg pp, (1, 1) = %Wl(,ul oT Y u, oT™1;d), T, affine transformation

Uy, Uz on B(R), with d(zy, z,) = |z; — z,|, there exists order preserving optimal transport plan *

Wi (i, 1) = J | = x| dre = [ |EL ) — BV ()| dp = [Shorack, 1956] = [ [E,, (£) — F,, ()| dt
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Model bias metrics

Facts (Miroshnikov et al, 2021a)

W scales under linear transformations of u, (d = || - ||), but Biasp ry € [0,1] saturates.

Given predictors X ,model f, and G € {0,1}
(model bias) Biasy, (f|X,G) = Wi (f(X)|G =0, f(X)|G = 1)

Connection with statistical parity:

Biasy, (f|X,G) = [ bias(Y;|X, G)dt

Connection with generic parity: A = {44, ..., Ay}, P(Y; =1|G =0,4,) =P, =1|G6 =1,4,)),A,, EA

Biasy, 4 (f1X,G) = ZwuW1(f(XOHG = 0,4}, FOOIG = 1, Ap}) = [ bias,(Y1X, G)dt



Model bias metrics

Assumption

Model f(X) € R has a favorable direction (for a risk score the direction is <)
Definition

Positive/negative model bias Biasvlf,1 (f1X, G) is the transport effort (under %) of Pr(x)|c=0 in favorable/non-favorable directions

Example
X~Nw 1+ 6)Vr) 0175 = Lo — fG=o.coF
— fIG=1COF
Y ~ Bernoulli(f(X)) 0.150- - {716 =0} {/IG=1}
f(X)=O'(‘Ll—X) 0.125-
0.6
Zf = —1 0.100
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Fairness interpretability objectives

Objective
* Determine the main drivers for the model biases Biasvi,,1 (fl1X,G)
Main idea

* Combine ML interpretability methods and transport approach



ML Interpretability

Having a complex model structure comes at the expense of interpretability.
Interpretability approaches
* Self-explainable models

* Post-hoc explanations

Post-hoc explainers (examples)
. EL-ME(X; f) = IE[f(xi,X_{i})]leXi, marginal expectation (ME), [PDP, Freidman, 2001]

« EFE(X; f) = E[f(X)|X;], conditional expectation (CE)



ML Interpretability

Post-hoc explainers (game theory)
* Players: N = {1,2,...,n} (features become player)
* Game: set function v(S), S € N, v(N) = total payoff

* Game value: h[N,v] = (hy[v], hy[V], ... hp[V]) € R®

Shapley value (Shapley, 1953)

(s—1)!(n-s)!

pilv] = Tsen———= () —v(S\{i}), i eN

n!
@ is efficient: Y, @;[v] = v(N), linear, symmetric.

Probabilistic games

o VE(S;X,f) = E[f(Xs,X_s)|Xs], conditional game explores model predictions

« vME(S; X, f) = E[f (x5, X_§)]|xg=x,, Marginal game explores the model



ML Interpretability

Fun Example (Marginal Shapley h[v] = ¢[v])

Y:Hfi(Xi)+€:f(X)+€

f1(X1) = logistic(2Xy), fo(X) = sgn(Xa) v/ | Xal,
f3(X3) = sin(X3), fa(X4) = logistic(5Xy).

26 —10
(XI,XQ) NN((]-’ 1)321)’ Iy = [_10 26 :|

(o, X0) ~ ML 1.2, B | g

Explanations
Explanations

Explanations
Explanations




Fairness Interpretability

Definition (basic bias explanations)

* Given an explainer E;(X; f) of predictor X;, the bias explanation is defined via the transport cost
Bi(f1X,G) = Wi (E;(X)|G = 0, E;(X)|G = 1)

* Positive and negative bias explanations 8+ are defined as transport effort in favorable and non-favorable

directions.

Notes
* Type of ML explainers matters (marginal vs conditional)

* Some ML explainers isolate the effect of each predictor and some not (local vs global)



Fairness Interpretability

Example: bias explanations based on marginal Shapley values

u=5a=:(10,-4161,-3)

X, ~N@—a,(1-6),05+6)
Xo~N@w—a,(1-6),1)

Xz ~N@—az;(1-6)1)

Xy~ N(u—a,(1-G6),1-056)

Xs ~N(u—as(1—G),1—0.756)

Y ~ Bernoulli(f(X)),f(X) =o(}X; — 24.5)

1.0 ?|G=0|:DF 1.0 —— SHAP|G=0 CDF 1.0 —— SHAPR)|G=0 CDF

— HG6=1CDF SHAPy|G =1 CDF / SHAP,|G =1 CDF /

0.8

on 0-1 Model Bias = 0.1229 = 0.1229 (pos) + 0.0000 (neg).
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I negative
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: t : 0.06
10 — SHAP3|G =0 CDF 1.0 — SHAP4|G =0 CDF 1.0- — SHAPs|G =0 CDF /
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08 / . / 08 L
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Fairness Interpretability

Example (offsetting)

Xi~Nwwl+6),X, ~NWl1+6)
Y ~ Bernoulli(f (X)), f(X) = o(Ru — X1 — X>)

L0 fe=ocor 10— PppRy|G=0CDF 5 i 10— ppP,|G=0CDF >
e PDP1|G = 1 CDF y PDP,|G = 1 CDF &
os o8 s 08 i
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Notes
* Bias explanations are the same
* Bias predictor interactions

Xi~NWw2-06),X, ~NW1+06)
Y ~ Bernoulli(f (X)), f(X) = o(Ru — X1 — X>)
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Fairness Interpretability

* Basic bias explanations are not additive
* Cannot handle bias interactions when mixed bias predictors are present or predictors interact

* No tracking of how mass is transported



Fairness Interpretability

* Basic bias explanations are not additive
* Cannot handle bias interactions when mixed bias predictors are present or predictors interact

* No tracking of how mass is transported

Game theoretical approach

Consider an ML explainer E5(X; f) of predictor Xg, S € {1,2,...n}

Predictors {X;};cn are players that push/pull explainer subpopulation distributions apart when joining a coalition S ¢ N

A game v (8) = W, (Es(X)|G = 0,Es(X)|G = 1)

Shapley bias explanations ?'* (f|X, G) = @[v?'%]



Fairness Interpretability

Example (marginal Shapley-bias explanations)

u=5a=:(10,-4161,-3)

X, ~N@—a,(1-6),05+6)
Xo~N@w—a,(1-6),1)

Xz ~N@—az;(1-6)1)

Xy~ N(u—a,(1-G6),1-056)

Xs ~N(u—as(1—G),1—0.756)

Y ~ Bernoulli(f(X)),f(X) =o(}X; — 24.5)

(p[vbiasi(-,(p[vME])] (p[vbias(',(p[UME])]

0-1 Model Bias = 0.1229 = 0.1229 (pos) + 0.0000 (neg). 0-1 Model Bias = 0.1229 = 0.1229 (pos) + 0.0000 [neg).

- mmm positive = total
B negative awe- 1 net
08
B w s
a4
noz
c.02
X Xy Xa X1 X2 Xy ’ ¢ X1

X3

Shapley-bias explanations
Shapley-bias explanations




On stability of bias explanations

* Conditional bias explanations are consistent with the data; computational complexity might be infeasible under dependencies in X.

* Marginal bias explanations are consistent with the structure of the model f(x), complexity O(2™)

Lemma (stability [Miroshnikov et al 2021a])

The conditional and marginal Shapley-bias explanations have the following properties:

i @l ESIG, os[vEE]) — o' (Flg, @svED | < CIIf — gllzpy

.. L ] ~ 1
i 10" CE(1G, s[VME]) — 07" (flg, @s[VMED] < CIIf = glli2 gy Px = 3 Xsen Prs ® Py



On stability of bias explanations

* Conditional bias explanations are consistent with the data; computational complexity might be infeasible under dependencies in X

* Marginal bias explanations are consistent with the structure of the model f(x), complexity O(2™)

Lemma (stability [Miroshnikov et al 2021a])

The conditional and marginal Shapley-bias explanations have the following properties:

i 1l E(FIG, os[vEED) — P (flg, os[vEEDI < ClIf — gll 2,

.. [ i ~ 1
. |§0?Lasi(f|G'QDS[VME]) - (Plplasi(ﬂg, ps[v"* DI < ClIf — Illizpy) Px = 2725cN Py, @ Px_g

Notes (Miroshnikov et al, 2021b, arXiv:2102.10878) :

* For marginal Shapley-bias explanations continuity in L?(Pyx) in general breaks down under dependencies in X
« Marginal and conditional points of view can be unified via grouping and stability in L? (Py) is guaranteed

* Complexity can be reduced via quotient games and recursive approach
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