Wasserstein-based fairness interpretability framework for machine learning models

Alexey Miroshnikov

Konstandinos Kotsiopoulos Ryan Franks Arjun Ravi Kannan

Emerging Capabilities & Data Science Research Group, Discover Financial Services

Boston University, CISE seminar, October 2021 Boston, Massachusetts

Disclaimer: This presentation represents the views of the authors and does not indicate concurrence by Discover Financial Services.

Overview

- Introduction
- Fairness/bias for classifiers
- Fairness/bias for regressors
- Model bias metrics
- ML interpretability
- Fairness interpretability

Introduction

- Predictive ML models, and strategies that rely on such models, are subject to laws and regulations that ensure fairness (e.g. ECOA, EEOA).
- Examples of protected attributes: race, gender, age, ethnicity, national origin, marital status, etc.
- Tradeoff between accuracy and bias

Main steps in ML fairness

- 1. Fairness assessment (or bias measurement)
- 2. Bias mitigation

Fairness for classifier

Notation

Data (X, G, Y)

- $X \in \mathbb{R}^n$, predictors
- $G \in \{0,1\}$ (e.g. male/female)
- $Y \in \{0,1\}$, response variable

Models

- $f(X) = \widehat{\mathbb{P}}(Y = 1|X)$, trained classification score
- $Y_t = \mathbb{1}_{\{f(X) > t\}}$, a classifier for a given threshold $t \in \mathbb{R}$
- \hat{Y} , a classifier

Labels

- Non-protected class: G = 0
- Favorable outcome: Y = 0

Fairness for classifier

 ML bias can be viewed as an ability to differentiate between subpopulations at the level of data or outcomes (*Dwork et al 2012*)

Statistical parity (Feldman et al, 2015)

$$\mathbb{P}(\hat{Y}=0|G=0) = \mathbb{P}(\hat{Y}=0|G=1)$$

Equalized odds (Hardt et al, 2015)

$$\mathbb{P}(\hat{Y} = 0 | Y = y, G = 0) = \mathbb{P}(\hat{Y} = 0 | Y = y, G = 1), y \in \{0, 1\}$$

Equal opportunity (Hardt et al, 2015)

$$\mathbb{P}(\hat{Y} = 0 | Y = 0, G = 0) = \mathbb{P}(\hat{Y} = 0 | Y = 0, G = 1)$$

Geometric parity for \hat{Y}_{t_*} (Miroshnikov et al, 2021a)

$$F_0^{[-1]}(p_*) = F_1^{[-1]}(p_*), \ p_* = F_0(t_*) = \mathbb{P}(f(X) \le t_* | Y = 0)$$

Fairness in classifiers

Statistical parity classifier bias

 $bias(Y_t|X, G) = |\mathbb{P}(Y_t = 0|G = 0) - \mathbb{P}(Y_t = 0|G = 1)|$

Example (proxy predictor)

- $X \sim N(5-G,\sqrt{5})$, $\mathbb{P}(G=0) = \mathbb{P}(G=1) = 0.5$
- $Y \sim Bernoulli(f(X)), f(x) = logistic(5 x)$

Fairness in classifiers

Some approaches for bias mitigation of classifiers:

• Maximization with fairness constraints

 $Y^*(X,G) \text{ or } Y^*(X) = \max_{fairness(Y^*|G)} \mathcal{L}(Y^*, X^{(train)})$, or mini-max approach

Dwork et al (2012), Woodworth et al (2017), Zhang et al (2018), and many others.

- Post-corrective methods (Hardt et al, 2015)
 - Design randomized (equalized odds) optimal classifier $\tilde{Y}(X, G; f) \in \mathcal{P}(\{0,1\})$ given the trained score f.
- Fair dataset construction. Feldman et al, 2015
- Pareto efficient frontier. Schmidt and Stephens (2019), Perrone et al (2020).

Motivation

- Explicit use of the protected attribute G is not allowed by ECOA neither in training nor prediction
- Typical bias measurements test fairness of a classifier Y_t , not the regressor score f(X)
- Mitigation procedures often focus on the construction of a fair classifier $Y^*(X, G)$, not a fair model $f^*(X, G)$
- Fair ML hyperparameter search might be computationally expensive due to retraining
- Determining the main drivers (predictors) for the model bias

Acceptable form of bias mitigation

- 1. Given the (regressor) model f assess the bias across subpopulation distribution of $f(X)|G = k, k \in \{0,1\}$
- 2. Determine the main drivers for the bias $X_{i_1}, X_2, ..., X_{i_n} = X_I$
- 3. Construct a post-processed model $\tilde{f}(X; f, X_I)$ that does not rely on G

Model bias metrics for regressors

• At an algorithmic level, the bias can be viewed as an ability to differentiate between two subpopulations at the level of data or outcomes.

- Bias metrics requirements:
- 1. Must keep track of the geometry of the model distribution $P_{f(X)}$ (values control)
- 2. Must be consistent with a wide class of classifier fairness criteria
- 3. Must keep track of the sign of the bias across subpopulations
- 4. Must be meaningful (interpretable)

Potential candidates

 μ_1, μ_2 probability measures on a metric space Z equipped with a metric $d(z_1, z_2)$.

• Randomized binary classifier (RBC) based bias [Dwork et al (2012)]

 $M_z: \mathbb{Z} \to \mathcal{P}(\{0,1\})$, randomized classifier.

$$Bias_{d,D_{TV}}(\mu_1,\mu_2) = \sup_{M \in Lip_1(Z,d,D_{TV})} \{ \mathbb{E}_{z \sim \mu_1}[M_Z(0)] - \mathbb{E}_{x \sim \mu_2}[M_Z(0)] \}$$

• Wasserstein metric W_q (optimal transport cost of μ_1 to μ_2 and vice verse)

 $W_q(\mu_1,\mu_2;d)^q = \inf_{\pi \in \mathcal{P}(\mathcal{Z}^2)} \left\{ \mathbb{E}_{(z_1,z_2) \sim \pi} \left[d(z_1,z_2) \right]^q, \text{ (transport plan) } \pi \text{ with marginals } \mu_1,\mu_2 \right\}$

- In our application μ_1, μ_2 are $P_{f(X)|G=k}, k = 0, 1$.
- What about statistical distance such KS or mutual information between f(X) and G?

Facts

• (Dwork et al 2012): if μ_1, μ_2 have discrete supports and $d \leq 1$

$$Bias_{d,D_{TV}}(\mu_1,\mu_2) = W_1(\mu_1,\mu_2;d)$$

• (Miroshnikov et al 2021a): for any μ_1, μ_2 with support in $B_L(z_*)$ and $d(z_1, z_2) = ||z_1 - z_2||$

 $Bias_{d,D_{TV}}(\mu_1,\mu_2) = \frac{1}{L}W_1(\mu_1 \circ T^{-1},\mu_2 \circ T^{-1};d), T, \text{ affine transformation}$

• μ_1, μ_2 on $\mathcal{B}(\mathbb{R})$, with $d(z_1, z_2) = |z_1 - z_2|$, there exists order preserving optimal transport plan π^*

 $W_1(\mu_1,\mu_2) = \int |x_1 - x_2| \, d\pi^* = \int \left| F_{\mu_1}^{[-1]}(p) - F_{\mu_2}^{[-1]}(p) \right| \, dp = [\text{Shorack}, 1956] = \int \left| F_{\mu_1}(t) - F_{\mu_2}(t) \right| \, dt$

Facts (Miroshnikov et al, 2021a)

- W_q scales under linear transformations of μ_k ($d = \|\cdot\|$), but $Bias_{D,TV} \in [0,1]$ saturates.
- Given predictors X, model f, and $G \in \{0,1\}$

(model bias) $Bias_{W_1}(f|X,G) = W_1(f(X)|G = 0, f(X)|G = 1)$

• Connection with statistical parity:

 $Bias_{W_1}(f|X,G) = \int bias(Y_t|X,G)dt$

• Connection with generic parity: $\mathcal{A} = \{A_1, \dots, A_M\}, \ \mathbb{P}(Y_t = 1 | G = 0, A_m) = \mathbb{P}(Y_t = 1 | G = 1, A_m), A_m \in \mathcal{A}$

 $Bias_{W_1,\mathcal{A}}(f|X,G) = \sum w_m W_1(f(X)|\{G = 0, A_m\}, f(X)|\{G = 1, A_m\}) = \int bias_{\mathcal{A}}(Y_t|X,G)dt$

Assumption

Model $f(X) \in \mathbb{R}$ has a favorable direction (for a risk score the direction is \leftarrow)

Definition

Positive/negative model bias $Bias_{W_1}^{\pm}(f|X, G)$ is the transport effort (under π^*) of $P_{f(X)|G=0}$ in favorable/non-favorable directions

Example

$$X \sim \mathcal{N}(\mu, (1+G)\sqrt{\mu})$$
$$Y \sim Bernoulli(f(X))$$
$$f(X) = \sigma(\mu - X)$$
$$\zeta_f = -1$$

Fairness interpretability objectives

Objective

• Determine the main drivers for the model biases $Bias_{W_1}^{\pm}(f|X,G)$

Main idea

• Combine ML interpretability methods and transport approach

ML Interpretability

Having a complex model structure comes at the expense of interpretability.

Interpretability approaches

- Self-explainable models
- Post-hoc explanations

Post-hoc explainers (examples)

- $E_i^{ME}(X; f) = \mathbb{E}[f(x_i, X_{-\{i\}})]|_{x_i=X_i}$, marginal expectation (ME), [PDP, Freidman, 2001]
- $E_i^{CE}(X; f) = \mathbb{E}[f(X)|X_i]$, conditional expectation (CE)

ML Interpretability

Post-hoc explainers (game theory)

- Players: $N = \{1, 2, ..., n\}$ (features become player)
- Game: set function $v(S), S \subset N, v(N) =$ total payoff
- Game value: $h[N, v] = (h_1[v], h_2[v], \dots h_n[v]) \in \mathbb{R}^n$

Shapley value (Shapley, 1953)

$$\varphi_i[v] = \sum_{S \subset N} \frac{(s-1)!(n-s)!}{n!} \left(v(S) - v(S \setminus \{i\}) \right), \ i \in N$$

 φ is efficient: $\sum_i \varphi_i[v] = v(N)$, linear, symmetric.

Probabilistic games

- $v^{CE}(S; X, f) = \mathbb{E}[f(X_S, X_{-S})|X_S]$, conditional game explores model predictions
- $v^{ME}(S; X, f) = \mathbb{E}[f(x_S, X_{-S})]|_{x_S = X_S}$, marginal game explores the model

ML Interpretability

Fun Example (Marginal Shapley $h[v] = \varphi[v]$)

$$Y = \prod_{i=1}^{4} f_i(X_i) + \epsilon = f(X) + \epsilon$$

$$f_1(X_1) = logistic(2X_1), \quad f_2(X) = sgn(X_2)\sqrt{|X_2|}, \\ f_3(X_3) = sin(X_3), \quad f_4(X_4) = logistic(5X_4).$$

$$(X_1, X_2) \sim \mathcal{N}((1, 1), \Sigma_1), \quad \Sigma_1 = \begin{bmatrix} 26 & -10 \\ -10 & 26 \end{bmatrix}$$

 $(X_3, X_4) \sim \mathcal{N}((1, 1), \Sigma_2), \quad \Sigma_2 = \begin{bmatrix} 10 & 6 \\ 6 & 10 \end{bmatrix}$

Definition (basic bias explanations)

• Given an explainer $E_i(X; f)$ of predictor X_i , the bias explanation is defined via the transport cost

 $\beta_i(f|X,G) = W_1(E_i(X)|G = 0, E_i(X)|G = 1)$

Positive and negative bias explanations β[±] are defined as transport effort in favorable and non-favorable directions.

Notes

- Type of ML explainers matters (marginal vs conditional)
- Some ML explainers isolate the effect of each predictor and some not (local vs global)

Example: bias explanations based on marginal Shapley values

$$\begin{split} \mu &= 5, a = \frac{1}{20} (10, -4, 16, 1, -3) \\ X_1 &\sim \mathcal{N} (\mu - a_1 (1 - G), 0.5 + G) \\ X_2 &\sim \mathcal{N} (\mu - a_2 (1 - G), 1) \\ X_3 &\sim \mathcal{N} (\mu - a_3 (1 - G), 1) \\ X_4 &\sim \mathcal{N} (\mu - a_4 (1 - G), 1 - 0.5G) \\ X_5 &\sim \mathcal{N} (\mu - a_5 (1 - G), 1 - 0.75G) \\ Y &\sim Bernoulli (f(X)), f(X) = \sigma(\Sigma X_i - 24.5) \end{split}$$

Example (offsetting)

$$X_1 \sim \mathcal{N}(\mu, 1+G), X_2 \sim \mathcal{N}(\mu, 1+G)$$

$$Y \sim Bernoulli(f(X)), f(X) = \sigma(2\mu - X_1 - X_2)$$

$$\begin{aligned} X_1 &\sim \mathcal{N}(\mu, 2-G), X_2 &\sim \mathcal{N}(\mu, 1+G) \\ Y &\sim Bernoulli(f(X)), f(X) = \sigma(2\mu - X_1 - X_2) \end{aligned}$$

Notes

- Bias explanations are the same
- Bias predictor interactions

- Basic bias explanations are not additive
- Cannot handle bias interactions when mixed bias predictors are present or predictors interact
- No tracking of how mass is transported

- Basic bias explanations are not additive
- · Cannot handle bias interactions when mixed bias predictors are present or predictors interact
- No tracking of how mass is transported

Game theoretical approach

- Consider an ML explainer $E_S(X; f)$ of predictor $X_S, S \subset \{1, 2, ..., n\}$
- Predictors $\{X_i\}_{i \in N}$ are players that push/pull explainer subpopulation distributions apart when joining a coalition $S \subset N$
- A game $v^{bias}(S) = W_1(E_S(X)|G = 0, E_S(X)|G = 1)$
- Shapley bias explanations $\varphi^{bias}(f|X,G) = \varphi[v^{bias}]$

Example (marginal Shapley-bias explanations)

$$\begin{split} \mu &= 5, a = \frac{1}{20} (10, -4, 16, 1, -3) \\ X_1 &\sim \mathcal{N}(\mu - a_1(1 - G), 0.5 + G) \\ X_2 &\sim \mathcal{N}(\mu - a_2(1 - G), 1) \\ X_3 &\sim \mathcal{N}(\mu - a_3(1 - G), 1) \\ X_4 &\sim \mathcal{N}(\mu - a_4(1 - G), 1 - 0.5G) \\ X_5 &\sim \mathcal{N}(\mu - a_5(1 - G), 1 - 0.75G) \\ Y &\sim Bernoulli(f(X)), f(X) = \sigma(\Sigma X_i - 24.5) \end{split}$$

On stability of bias explanations

- Conditional bias explanations are consistent with the data; computational complexity might be infeasible under dependencies in *X*.
- Marginal bias explanations are consistent with the structure of the model f(x), complexity $O(2^n)$

Lemma (stability [Miroshnikov et al 2021a])

The conditional and marginal Shapley-bias explanations have the following properties:

i.
$$|\varphi_i^{bias\pm}(f|G,\varphi_S[v^{CE}]) - \varphi_i^{bias\pm}(f|g,\varphi_S[v^{CE}])| \le C ||f - g||_{L^2(P_X)}$$

ii.
$$|\varphi_i^{bias\pm}(f|G,\varphi_S[v^{ME}]) - \varphi_i^{bias\pm}(f|g,\varphi_S[v^{ME}])| \le C ||f - g||_{L^2(\tilde{P}_X)}, \tilde{P}_X = \frac{1}{2^n} \sum_{S \subseteq N} P_{X_S} \otimes P_{X_{-S}}$$

On stability of bias explanations

- Conditional bias explanations are consistent with the data; computational complexity might be infeasible under dependencies in X
- Marginal bias explanations are consistent with the structure of the model f(x), complexity $O(2^n)$

Lemma (stability [Miroshnikov et al 2021a])

The conditional and marginal Shapley-bias explanations have the following properties:

i.
$$|\varphi_i^{bias\pm}(f|G,\varphi_S[v^{CE}]) - \varphi_i^{bias\pm}(f|g,\varphi_S[v^{CE}])| \le C ||f - g||_{L^2(P_X)}$$

ii.
$$|\varphi_i^{bias\pm}(f|G,\varphi_S[v^{ME}]) - \varphi_i^{bias\pm}(f|g,\varphi_S[v^{ME}])| \le C ||f - g||_{L^2(\tilde{P}_X)}, \tilde{P}_X = \frac{1}{2^n} \sum_{S \subset N} P_{X_S} \otimes P_{X_{-S}}$$

Notes (Miroshnikov et al, 2021b, arXiv:2102.10878) :

- For marginal Shapley-bias explanations continuity in $L^2(P_X)$ in general breaks down under dependencies in X
- Marginal and conditional points of view can be unified via grouping and stability in $L^2(P_X)$ is guaranteed
- Complexity can be reduced via quotient games and recursive approach

Acknowledgements

- Steve Dickerson (SVP, Chief Data Science Officer, Decision Management, Discover)
- Raghu Kulkarni (VP, Data Science, Discover)
- Melanie Wiwczaroski (Sr. Director, Enterprise Fair Banking, Discover)
- Patrick Haggerty (Director & Senior Counsel, Discover)
- Kate Prochaska (Sr. Counsel & Director, Regulatory Policy, Discover)
- Markos Katsoulakis (Full Professor, University of Massachusetts Amherst)
- Robin Young (Full Professor, University of Massachusetts Amherst)
- Matthias Steinrücken (Assistant Professor, University of Chicago)