Wasserstein-based fairness interpretability framework for machine learning models

Alexey Miroshnikov
Konstandinos Kotsiopoulos
Ryan Franks
Arjun Ravi Kannan

Emerging Capabilities \& Data Science Research Group, Discover Financial Services

Boston University, CISE seminar, October 2021
Boston, Massachusetts

Overview

- Introduction
- Fairness/bias for classifiers
- Fairness/bias for regressors
- Model bias metrics
- ML interpretability
- Fairness interpretability

Introduction

- Predictive ML models, and strategies that rely on such models, are subject to laws and regulations that ensure fairness (e.g. ECOA, EEOA).
- Examples of protected attributes: race, gender, age, ethnicity, national origin, marital status, etc.
- Tradeoff between accuracy and bias

Main steps in ML fairness

1. Fairness assessment (or bias measurement)
2. Bias mitigation

Fairness for classifier

Notation

Data (X, G, Y)

- $X \in \mathbb{R}^{n}$, predictors
- $G \in\{0,1\}$ (e.g. male/female)
- $Y \in\{0,1\}$, response variable

Models

- $f(X)=\widehat{\mathbb{P}}(Y=1 \mid X)$, trained classification score
- $Y_{t}=1_{\{f(X)>t\}}$, a classifier for a given threshold $t \in \mathbb{R}$
- \hat{Y}, a classifier

Labels

- Non-protected class: $G=0$
- Favorable outcome: $Y=0$

Fairness for classifier

- ML bias can be viewed as an ability to differentiate between subpopulations at the level of data or outcomes (Dwork et al 2012)

Statistical parity (Feldman et al, 2015)

$$
\mathbb{P}(\hat{Y}=0 \mid G=0)=\mathbb{P}(\hat{Y}=0 \mid G=1)
$$

Equalized odds (Hardt et al, 2015)
$\mathbb{P}(\hat{Y}=0 \mid Y=y, G=0)=\mathbb{P}(\hat{Y}=0 \mid Y=y, G=1), y \in\{0,1\}$
Equal opportunity (Hardt et al, 2015)

$$
\mathbb{P}(\hat{Y}=0 \mid Y=0, G=0)=\mathbb{P}(\hat{Y}=0 \mid Y=0, G=1)
$$

Geometric parity for $\widehat{Y}_{t_{*}}$ (Miroshnikov et al, 2021a)

$$
F_{0}^{[-1]}\left(p_{*}\right)=F_{1}^{[-1]}\left(p_{*}\right), \quad p_{*}=F_{0}\left(t_{*}\right)=\mathbb{P}\left(f(X) \leq t_{*} \mid Y=0\right)
$$

Fairness in classifiers

Statistical parity classifier bias
$\operatorname{bias}\left(Y_{t} \mid X, G\right)=\left|\mathbb{P}\left(Y_{t}=0 \mid G=0\right)-\mathbb{P}\left(Y_{t}=0 \mid G=1\right)\right|$

Example (proxy predictor)

- $X \sim N(5-G, \sqrt{5}), \mathbb{P}(G=0)=\mathbb{P}(G=1)=0.5$
- $Y \sim \operatorname{Bernoulli}(f(X)), f(x)=\operatorname{logistic}(5-x)$

Fairness in classifiers

Some approaches for bias mitigation of classifiers:

- Maximization with fairness constraints

$$
Y^{*}(X, G) \text { or } Y^{*}(X)=\max _{\text {fairness }\left(Y^{*} \mid G\right)} \mathcal{L}\left(Y^{*}, X^{(\text {train })}\right) \text {, or mini-max approach }
$$

Dwork et al (2012), Woodworth et al (2017), Zhang et al (2018), and many others.

- Post-corrective methods (Hardt et al, 2015)
- Design randomized (equalized odds) optimal classifier $\tilde{Y}(X, G ; f) \in \mathcal{P}(\{0,1\})$ given the trained score f.
- Fair dataset construction. Feldman et al, 2015
- Pareto efficient frontier. Schmidt and Stephens (2019), Perrone et al (2020).

Motivation

- Explicit use of the protected attribute G is not allowed by ECOA neither in training nor prediction
- Typical bias measurements test fairness of a classifier Y_{t}, not the regressor score $f(X)$
- Mitigation procedures often focus on the construction of a fair classifier $Y^{*}(X, G)$, not a fair model $f^{*}(X, G)$
- Fair ML hyperparameter search might be computationally expensive due to retraining
- Determining the main drivers (predictors) for the model bias

Acceptable form of bias mitigation

1. Given the (regressor) model f assess the bias across subpopulation distribution of $f(X) \mid G=k, k \in\{0,1\}$
2. Determine the main drivers for the bias $X_{i_{1}}, X_{2}, \ldots X_{i_{n}}=X_{I}$
3. Construct a post-processed model $\tilde{f}\left(X ; f, X_{I}\right)$ that does not rely on G

Model bias metrics for regressors

- At an algorithmic level, the bias can be viewed as an ability to differentiate between two subpopulations at the level of data or outcomes.
- Bias metrics requirements:

1. Must keep track of the geometry of the model distribution $P_{f(X)}$ (values control)
2. Must be consistent with a wide class of classifier fairness criteria
3. Must keep track of the sign of the bias across subpopulations
4. Must be meaningful (interpretable)

- An ability to differentiate vs independence:

Model bias metrics

Potential candidates

μ_{1}, μ_{2} probability measures on a metric space Z equipped with a metric $d\left(z_{1}, z_{2}\right)$.

- Randomized binary classifier (RBC) based bias [Dwork et al (2012)]

$$
M_{z}: Z \rightarrow \mathcal{P}(\{0,1\}) \text {, randomized classifier. }
$$

$$
\operatorname{Bias}_{d, D_{T V}}\left(\mu_{1}, \mu_{2}\right)=\sup _{M \in L p_{1}\left(z, d, D_{T V}\right)}\left\{\mathbb{E}_{z \sim \mu_{1}}\left[M_{z}(0)\right]-\mathbb{E}_{x \sim \mu_{2}}\left[M_{z}(0)\right]\right\}
$$

- Wasserstein metric W_{q} (optimal transport cost of μ_{1} to μ_{2} and vice verse)

$$
W_{q}\left(\mu_{1}, \mu_{2} ; d\right)^{q}=\inf _{\pi \in \mathcal{P}\left(\mathcal{Z}^{2}\right)}\left\{\mathbb{E}_{\left(z_{1}, z_{2}\right) \sim \pi}\left[d\left(z_{1}, z_{2}\right)\right]^{q}, \text { (transport plan) } \pi \text { with marginals } \mu_{1}, \mu_{2}\right\}
$$

- In our application μ_{1}, μ_{2} are $P_{f(X) \mid G=k}, k=0,1$.
- What about statistical distance such KS or mutual information between $f(X)$ and G ?

Model bias metrics

Facts

- (Dwork et al 2012): if μ_{1}, μ_{2} have discrete supports and $d \leq 1$

$$
\operatorname{Bias}_{d, D_{T V}}\left(\mu_{1}, \mu_{2}\right)=W_{1}\left(\mu_{1}, \mu_{2} ; d\right)
$$

- (Miroshnikov et al 2021a): for any μ_{1}, μ_{2} with support in $B_{L}\left(z_{*}\right)$ and $d\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)=\left\|z_{1}-z_{2}\right\|$

$$
\operatorname{Bias}_{d, D_{T V}}\left(\mu_{1}, \mu_{2}\right)=\frac{1}{L} W_{1}\left(\mu_{1} \circ T^{-1}, \mu_{2} \circ T^{-1} ; d\right), T, \text { affine transformation }
$$

- μ_{1}, μ_{2} on $\mathcal{B}(\mathbb{R})$, with $d\left(z_{1}, z_{2}\right)=\left|z_{1}-z_{2}\right|$, there exists order preserving optimal transport plan π^{*}

$$
\mathrm{W}_{1}\left(\mu_{1}, \mu_{2}\right)=\int\left|x_{1}-x_{2}\right| d \pi^{*}=\int\left|F_{\mu_{1}}^{[-1]}(p)-F_{\mu_{2}}^{[-1]}(p)\right| d p=\left[\text { Shorack, 1956] }=\int\left|F_{\mu_{1}}(t)-F_{\mu_{2}}(t)\right| d t\right.
$$

Model bias metrics

Facts (Miroshnikov et al, 2021a)

- W_{q} scales under linear transformations of $\mu_{k}(d=\|\cdot\|)$, but Bias $_{D, T V} \in[0,1]$ saturates.
- Given predictors X, model f, and $G \in\{0,1\}$

$$
\text { (model bias) } \operatorname{Bias}_{W_{1}}(f \mid X, G)=W_{1}(f(X)|G=0, f(X)| G=1)
$$

- Connection with statistical parity:

$$
\operatorname{Bia}_{W_{1}}(f \mid X, G)=\int \operatorname{bias}\left(Y_{t} \mid X, G\right) d t
$$

- Connection with generic parity: $\mathcal{A}=\left\{A_{1}, \ldots, A_{M}\right\}, \mathbb{P}\left(Y_{t}=1 \mid G=0, A_{m}\right)=\mathbb{P}\left(Y_{t}=1 \mid G=1, A_{m}\right), A_{m} \in \mathcal{A}$

$$
\operatorname{Bias}_{W_{1}, \mathcal{A}}(f \mid X, G)=\sum w_{m} W_{1}\left(f(X)\left|\left\{G=0, A_{m}\right\}, f(X)\right|\left\{G=1, A_{m}\right\}\right)=\int \operatorname{bias}_{\mathcal{A}}\left(Y_{t} \mid X, G\right) d t
$$

Model bias metrics

Assumption

Model $f(X) \in \mathbb{R}$ has a favorable direction (for a risk score the direction is \leftarrow)

Definition

Positive/negative model bias Bias $\underset{W_{1}}{ \pm}(f \mid X, G)$ is the transport effort (under π^{*}) of $\mathrm{P}_{f(X) \mid G=0}$ in favorable/non-favorable directions

Example

$X \sim \mathcal{N}(\mu,(1+G) \sqrt{\mu})$
$Y \sim \operatorname{Bernoulli}(f(X))$
$f(X)=\sigma(\mu-X)$
$\zeta_{f}=-1$

Fairness interpretability objectives

Objective

- Determine the main drivers for the model biases $\operatorname{Bias}_{W_{1}}^{ \pm}(f \mid X, G)$

Main idea

- Combine ML interpretability methods and transport approach

ML Interpretability

Having a complex model structure comes at the expense of interpretability.

Interpretability approaches

- Self-explainable models
- Post-hoc explanations

Post-hoc explainers (examples)

- $E_{i}^{M E}(X ; f)=\left.\mathbb{E}\left[f\left(x_{i}, X_{-\{i\}}\right)\right]\right|_{x_{i}=X_{i}}$, marginal expectation (ME), [PDP, Freidman, 2001]
- $E_{i}^{C E}(X ; f)=\mathbb{E}\left[f(X) \mid X_{i}\right]$, conditional expectation (CE)

ML Interpretability

Post-hoc explainers (game theory)

- Players: $N=\{1,2, \ldots, n\}$ (features become player)
- Game: set function $v(S), S \subset N, v(N)=$ total payoff
- Game value: $h[N, v]=\left(h_{1}[v], h_{2}[v], \ldots h_{n}[v]\right) \in \mathbb{R}^{n}$

Shapley value (Shapley, 1953)

$$
\varphi_{i}[v]=\sum_{S \subset N} \frac{(s-1)!(n-s)!}{n!}(v(S)-v(S \backslash\{i\})), i \in N
$$

φ is efficient: $\sum_{i} \varphi_{i}[v]=v(N)$, linear, symmetric.

Probabilistic games

- $v^{C E}(S ; X, f)=\mathbb{E}\left[f\left(X_{S}, X_{-S}\right) \mid X_{S}\right]$, conditional game explores model predictions
- $v^{M E}(S ; X, f)=\left.\mathbb{E}\left[f\left(x_{S}, X_{-S}\right)\right]\right|_{x_{S}=X_{S^{\prime}}}$, marginal game explores the model

ML Interpretability

Fun Example (Marginal Shapley $h[v]=\varphi[v]$)

$$
\begin{aligned}
& Y=\prod_{i=1}^{4} f_{i}\left(X_{i}\right)+\epsilon=f(X)+\epsilon \\
& \begin{array}{l}
f_{1}\left(X_{1}\right)=\operatorname{logistic}\left(2 X_{1}\right), \quad f_{2}(X)=\operatorname{sgn}\left(X_{2}\right) \sqrt{\left|X_{2}\right|} \\
f_{3}\left(X_{3}\right)=\sin \left(X_{3}\right), \\
f_{4}\left(X_{4}\right)=\operatorname{logistic}\left(5 X_{4}\right) \\
\left(X_{1}, X_{2}\right) \sim \mathcal{N}\left((1,1), \Sigma_{1}\right), \quad \Sigma_{1}=\left[\begin{array}{cc}
26 & -10 \\
-10 & 26
\end{array}\right] \\
\quad\left(X_{3}, X_{4}\right) \sim \mathcal{N}\left((1,1), \Sigma_{2}\right), \quad \Sigma_{2}=\left[\begin{array}{cc}
10 & 6 \\
6 & 10
\end{array}\right]
\end{array}
\end{aligned}
$$

Fairness Interpretability

Definition (basic bias explanations)

- Given an explainer $E_{i}(X ; f)$ of predictor X_{i}, the bias explanation is defined via the transport cost

$$
\beta_{i}(f \mid X, G)=W_{1}\left(E_{i}(X)\left|G=0, E_{i}(X)\right| G=1\right)
$$

- Positive and negative bias explanations $\beta^{ \pm}$are defined as transport effort in favorable and non-favorable directions.

Notes

- Type of ML explainers matters (marginal vs conditional)
- Some ML explainers isolate the effect of each predictor and some not (local vs global)

Fairness Interpretability

Example: bias explanations based on marginal Shapley values

$$
\begin{aligned}
& \mu=5, a=\frac{1}{20}(10,-4,16,1,-3) \\
& X_{1} \sim \mathcal{N}\left(\mu-a_{1}(1-G), 0.5+G\right) \\
& X_{2} \sim \mathcal{N}\left(\mu-a_{2}(1-G), 1\right) \\
& X_{3} \sim \mathcal{N}\left(\mu-a_{3}(1-G), 1\right) \\
& X_{4} \sim \mathcal{N}\left(\mu-a_{4}(1-G), 1-0.5 G\right) \\
& X_{5} \sim \mathcal{N}\left(\mu-a_{5}(1-G), 1-0.75 G\right) \\
& Y \sim \operatorname{Bernoulli}(f(X)), f(X)=\sigma\left(\sum X_{i}-24.5\right)
\end{aligned}
$$

Fairness Interpretability

Example (offsetting)
$X_{1} \sim \mathcal{N}(\mu, 1+G), X_{2} \sim \mathcal{N}(\mu, 1+G)$
$Y \sim \operatorname{Bernoulli}(f(X)), f(X)=\sigma\left(2 \mu-X_{1}-X_{2}\right)$

$X_{1} \sim \mathcal{N}(\mu, 2-G), X_{2} \sim \mathcal{N}(\mu, 1+G)$
$Y \sim \operatorname{Bernoulli}(f(X)), f(X)=\sigma\left(2 \mu-X_{1}-X_{2}\right)$

Notes

- Bias explanations are the same
- Bias predictor interactions

Fairness Interpretability

- Basic bias explanations are not additive
- Cannot handle bias interactions when mixed bias predictors are present or predictors interact
- No tracking of how mass is transported

Fairness Interpretability

- Basic bias explanations are not additive
- Cannot handle bias interactions when mixed bias predictors are present or predictors interact
- No tracking of how mass is transported

Game theoretical approach

- Consider an ML explainer $E_{S}(X ; f)$ of predictor $X_{S}, S \subset\{1,2, \ldots n\}$
- Predictors $\left\{X_{i}\right\}_{i \in N}$ are players that push/pull explainer subpopulation distributions apart when joining a coalition $S \subset N$
- A game $v^{\text {bias }}(S)=W_{1}\left(E_{S}(X)\left|G=0, E_{S}(X)\right| G=1\right)$
- Shapley bias explanations $\varphi^{\text {bias }}(f \mid X, G)=\varphi\left[v^{\text {bias }}\right]$

Fairness Interpretability

Example (marginal Shapley-bias explanations)
$\mu=5, a=\frac{1}{20}(10,-4,16,1,-3)$
$X_{1} \sim \mathcal{N}\left(\mu-a_{1}(1-G), 0.5+G\right)$
$X_{2} \sim \mathcal{N}\left(\mu-a_{2}(1-G), 1\right)$
$X_{3} \sim \mathcal{N}\left(\mu-a_{3}(1-G), 1\right)$
$X_{4} \sim \mathcal{N}\left(\mu-a_{4}(1-G), 1-0.5 G\right)$
$X_{5} \sim \mathcal{N}\left(\mu-a_{5}(1-G), 1-0.75 G\right)$
$Y \sim \operatorname{Bernoulli}(f(X)), f(X)=\sigma\left(\sum X_{i}-24.5\right)$

$\varphi\left[v^{\text {bias }}\left(,, \varphi\left[v^{M E}\right]\right)\right]$

On stability of bias explanations

- Conditional bias explanations are consistent with the data; computational complexity might be infeasible under dependencies in X.
- Marginal bias explanations are consistent with the structure of the model $f(x)$, complexity $O\left(2^{n}\right)$

Lemma (stability [Miroshnikov et al 2021a])
The conditional and marginal Shapley-bias explanations have the following properties:
i. $\quad\left|\varphi_{i}^{\text {bias } \pm}\left(f \mid G, \varphi_{S}\left[v^{C E}\right]\right)-\varphi_{i}^{\text {bias } \pm}\left(f \mid g, \varphi_{S}\left[v^{C E}\right]\right)\right| \leq C\|f-g\|_{L^{2}\left(P_{X}\right)}$
ii. $\quad\left|\varphi_{i}^{\text {bias } \pm}\left(f \mid G, \varphi_{S}\left[v^{M E}\right]\right)-\varphi_{i}^{\text {bias } \pm}\left(f \mid g, \varphi_{S}\left[v^{M E}\right]\right)\right| \leq C\|f-g\|_{L^{2}\left(\tilde{P}_{X}\right)}, \tilde{P}_{X}=\frac{1}{2^{n}} \sum_{S \subset N} P_{X_{S}} \otimes P_{X_{-S}}$

On stability of bias explanations

- Conditional bias explanations are consistent with the data; computational complexity might be infeasible under dependencies in X
- Marginal bias explanations are consistent with the structure of the model $f(x)$, complexity $O\left(2^{n}\right)$

Lemma (stability [Miroshnikov et al 2021a])
The conditional and marginal Shapley-bias explanations have the following properties:
i. $\quad\left|\varphi_{i}^{\text {bias } \pm}\left(f \mid G, \varphi_{S}\left[v^{C E}\right]\right)-\varphi_{i}^{\text {bias } \pm}\left(f \mid g, \varphi_{S}\left[v^{C E}\right]\right)\right| \leq C\|f-g\|_{L^{2}\left(P_{X}\right)}$
ii. $\quad\left|\varphi_{i}^{\text {bias } \pm}\left(f \mid G, \varphi_{S}\left[v^{M E}\right]\right)-\varphi_{i}^{\text {bias } \pm}\left(f \mid g, \varphi_{S}\left[v^{M E}\right]\right)\right| \leq C\|f-g\|_{L^{2}\left(\tilde{P}_{X}\right)}, \tilde{P}_{X}=\frac{1}{2^{n}} \sum_{S \subset N} P_{X_{S}} \otimes P_{X_{-S}}$

Notes (Miroshnikov et al, 2021b, arXiv:2102.10878) :

- For marginal Shapley-bias explanations continuity in $L^{2}\left(P_{X}\right)$ in general breaks down under dependencies in X
- Marginal and conditional points of view can be unified via grouping and stability in $L^{2}\left(P_{X}\right)$ is guaranteed
- Complexity can be reduced via quotient games and recursive approach

Acknowledgements

- Steve Dickerson (SVP, Chief Data Science Officer, Decision Management, Discover)
- Raghu Kulkarni (VP, Data Science, Discover)
- Melanie Wiwczaroski (Sr. Director, Enterprise Fair Banking, Discover)
- Patrick Haggerty (Director \& Senior Counsel, Discover)
- Kate Prochaska (Sr. Counsel \& Director, Regulatory Policy, Discover)
- Markos Katsoulakis (Full Professor, University of Massachusetts Amherst)
- Robin Young (Full Professor, University of Massachusetts Amherst)
- Matthias Steinrücken (Assistant Professor, University of Chicago)

