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Introduction n

• Predictive ML models, and strategies that rely on such models, are subject to laws and regulations that 

ensure fairness (e.g. ECOA, EEOA).

• Examples of protected attributes: race, gender, age, ethnicity, national origin, marital status, etc.

• Tradeoff between accuracy and bias

Main steps in ML fairness

1. Fairness assessment (or bias measurement)

2. Bias mitigation



Fairness for classifier
Notation

Data 𝑋, 𝐺, 𝑌

• 𝑋 ∈ ℝ , predictors

• 𝐺 ∈ 0,1  (e.g. male/female)

• 𝑌 ∈ {0,1}, response variable

Models

• 𝑓 𝑋 = ℙ 𝑌 = 1 𝑋 , trained classification score

• 𝑌 = 1  , a classifier for a given threshold 𝑡 ∈ ℝ

• 𝑌, a classifier

Labels

• Non-protected class: 𝐺 = 0

• Favorable outcome: 𝑌 = 0  



Fairness for classifier

• ML bias can be viewed as an ability to differentiate between subpopulations at the level of data or outcomes
(Dwork et al 2012) 

Statistical parity (Feldman et al, 2015) 

ℙ 𝑌 = 0 𝐺 = 0 = ℙ 𝑌 = 0 𝐺 = 1

Equalized odds (Hardt et al, 2015) 

ℙ 𝑌 = 0 𝑌 = 𝑦, 𝐺 = 0 = ℙ 𝑌 = 0 𝑌 = 𝑦, 𝐺 = 1 , 𝑦 ∈ {0,1}

Equal opportunity (Hardt et al, 2015) 

ℙ 𝑌 = 0 𝑌 = 0, 𝐺 = 0 = ℙ 𝑌 = 0 𝑌 = 0, 𝐺 = 1

Geometric parity for 𝑌
∗
 (Miroshnikov et al, 2021a) 

𝐹 (𝑝∗) = 𝐹 (𝑝∗),   𝑝∗ = 𝐹 𝑡∗ = ℙ(𝑓 𝑋 ≤ 𝑡∗|𝑌 = 0)



Fairness in classifiers

Statistical parity classifier bias

𝑏𝑖𝑎𝑠 𝑌 |𝑋, 𝐺 = ℙ 𝑌 = 0 𝐺 = 0 − ℙ 𝑌 = 0 𝐺 = 1

Example (proxy predictor) 

• 𝑋 ~ 𝑁 5 − 𝐺, 5   ,  ℙ 𝐺 = 0 = ℙ 𝐺 = 1 = 0.5

• 𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑓(𝑋)), 𝑓(𝑥) = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 5 − 𝑥



Fairness in classifiers

Some approaches for bias mitigation of classifiers:

• Maximization with fairness constraints 

𝑌∗ 𝑋, 𝐺  𝑜𝑟 𝑌∗ 𝑋 = max
( ∗| )

ℒ 𝑌∗, 𝑋  ,  or  mini-max approach

Dwork et al (2012), Woodworth et al (2017),  Zhang et al (2018), and many others.

• Post-corrective methods (Hardt et al, 2015)

• Design randomized (equalized odds) optimal classifier 𝑌 𝑋, 𝐺; 𝑓 ∈ 𝒫({0,1}) given the trained score 𝑓.

• Fair dataset construction. Feldman et al, 2015

• Pareto efficient frontier. Schmidt and Stephens (2019), Perrone et al (2020).



Motivation

• Explicit use of the protected attribute 𝐺 is not allowed by ECOA neither in training nor prediction

• Typical bias measurements test fairness of a classifier 𝑌 , not the regressor score 𝑓(𝑋)

• Mitigation procedures often focus on the construction of a fair classifier 𝑌∗(𝑋, 𝐺), not a fair model 𝑓∗ 𝑋, 𝐺

• Fair ML hyperparameter search might be computationally expensive due to retraining

• Determining the main drivers (predictors) for the model bias

Acceptable form of bias mitigation

1. Given the (regressor) model 𝑓 assess the bias across subpopulation distribution of 𝑓 𝑋 |𝐺 = 𝑘, 𝑘 ∈ 0,1

2. Determine the main drivers for the bias 𝑋 , 𝑋 , … 𝑋 = 𝑋

3. Construct a post-processed model 𝑓(𝑋; 𝑓, 𝑋 ) that does not rely on 𝐺



Model bias metrics

• Bias metrics requirements:

1. Must keep track of the geometry of the model distribution 𝑃 (values control) 

2. Must be consistent with a wide class of classifier fairness criteria 

3. Must keep track of the sign of the bias across subpopulations

4. Must be meaningful (interpretable)

Model bias metrics for regressors

• At an algorithmic level, the bias can be viewed as an ability to differentiate between two subpopulations
at the level of data or outcomes. 

• An ability to differentiate vs independence:



Model bias metrics

Potential candidates

𝜇 , 𝜇 probability measures on a metric space 𝒵 equipped with a metric 𝑑(𝑧 , 𝑧 ).

• Randomized binary classifier (RBC) based  bias [Dwork et al (2012)] 

𝑀 : 𝒵 → 𝒫({0,1}), randomized classifier.

𝐵𝑖𝑎𝑠 , 𝜇 , 𝜇 = sup
∈ (𝒵, , )

  𝔼 ∼ 𝑀 (0) − 𝔼 ∼ 𝑀 0   

• Wasserstein metric 𝑊 (optimal transport cost of 𝜇  to 𝜇 and vice verse)

 𝑊 𝜇 , 𝜇 ; 𝑑 = inf
∈𝒫(𝒵 )

  𝔼 , ∼  𝑑 𝑧 , 𝑧 , transport plan  𝜋 with marginals 𝜇 , 𝜇  

• In our application 𝜇 , 𝜇 are 𝑃 | , 𝑘 = 0,1.

• What about statistical distance such KS or mutual information between 𝑓(𝑋) and 𝐺?



Model bias metrics
Facts

• (Dwork et al 2012): if 𝜇 , 𝜇 have discrete supports and 𝑑 ≤ 1

𝐵𝑖𝑎𝑠 , 𝜇 , 𝜇 = 𝑊 𝜇 , 𝜇 ; 𝑑

• (Miroshnikov et al 2021a): for any 𝜇 , 𝜇 with support in 𝐵 (𝑧∗) and 𝑑 z , z = ‖𝑧 − 𝑧 ‖

𝐵𝑖𝑎𝑠 , 𝜇 , 𝜇 = 𝑊 𝜇 ∘ 𝑇 , 𝜇 ∘ 𝑇 ; 𝑑 , 𝑇,  affine transformation

• 𝜇 , 𝜇 on ℬ(ℝ), with 𝑑 𝑧 , 𝑧 = 𝑧 − 𝑧 , there exists order preserving optimal transport plan 𝜋∗

W 𝜇 , 𝜇 = ∫ |𝑥 − 𝑥 | 𝑑𝜋∗ = ∫ 𝐹 𝑝 − 𝐹  𝑝 𝑑𝑝 = Shorack, 1956 = ∫ 𝐹 𝑡 − 𝐹 (𝑡) 𝑑𝑡



Model bias metrics

Facts (Miroshnikov et al, 2021a)

• 𝑊 scales under linear transformations of 𝜇 𝑑 = ‖ ⋅ ‖ , but 𝐵𝑖𝑎𝑠 , ∈ [0,1] saturates.

• Given predictors 𝑋 ,model 𝑓, and 𝐺 ∈ {0,1}

(model bias)   𝐵𝑖𝑎𝑠 𝑓 𝑋, 𝐺 = 𝑊 𝑓 𝑋 𝐺 = 0, 𝑓 𝑋 𝐺 = 1  

• Connection with statistical parity:

𝐵𝑖𝑎𝑠 𝑓 𝑋, 𝐺 = ∫ 𝑏𝑖𝑎𝑠 𝑌 𝑋, 𝐺 𝑑𝑡

• Connection with generic parity: 𝒜 = {𝐴 , … , 𝐴 },  ℙ 𝑌 = 1 𝐺 = 0, 𝐴 = ℙ(𝑌 = 1|𝐺 = 1, 𝐴 ), 𝐴 ∈ 𝒜

𝐵𝑖𝑎𝑠 ,𝒜 𝑓 𝑋, 𝐺 = ∑𝑤 𝑊 (𝑓 𝑋 𝐺 = 0, 𝐴 , 𝑓 𝑋 𝐺 = 1, 𝐴 ) = ∫ 𝑏𝑖𝑎𝑠𝒜 𝑌 𝑋, 𝐺 𝑑𝑡



Model bias metrics

Assumption

Model 𝑓 𝑋 ∈ ℝ has a favorable direction (for a risk score the direction is ←) 

Definition

Positive/negative model bias 𝐵𝑖𝑎𝑠± (𝑓|𝑋, 𝐺) is the transport effort (under 𝜋∗) of P | in favorable/non-favorable directions

Example

𝑋 ∼ 𝒩 𝜇, 1 + 𝐺 𝜇

𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑓 𝑋

𝑓 𝑋 = 𝜎 𝜇 − 𝑋

𝜁 = −1



Fairness interpretability objectives

Objective

• Determine the main drivers for the model biases 𝐵𝑖𝑎𝑠± 𝑓 𝑋, 𝐺

Main idea 

• Combine ML interpretability methods and transport approach



ML Interpretability

Post-hoc explainers (examples)

• 𝐸 (𝑋; 𝑓) = 𝔼 𝑓 𝑥 , 𝑋 { } | ,  marginal expectation (ME), [PDP, Freidman, 2001]

• 𝐸 (𝑋; 𝑓) = 𝔼[𝑓(𝑋)|𝑋 ],  conditional expectation (CE)

Having a complex model structure comes at the expense of interpretability.

Interpretability approaches

• Self-explainable models

• Post-hoc explanations



ML Interpretability

Post-hoc explainers (game theory)

• Players: 𝑁 = {1,2, … , 𝑛} (features become player)

• Game: set function 𝑣 𝑆 , 𝑆 ⊂ 𝑁,  𝑣 𝑁 = total payoff

• Game value: ℎ 𝑁, 𝑣 = ℎ 𝑣 , ℎ 𝑣 , … ℎ [𝑣] ∈ ℝ

Shapley value (Shapley, 1953)

𝜑 𝑣 = ∑
! !

!
𝑣 𝑆 − 𝑣 𝑆\{𝑖}  , 𝑖 ∈ 𝑁  ⊂

𝜑 is efficient:  ∑ 𝜑 𝑣 = 𝑣(𝑁),  linear,  symmetric.

Probabilistic games 

• 𝑣 𝑆; 𝑋, 𝑓 =  𝔼[𝑓(𝑋 , 𝑋 )|𝑋 ],  conditional game explores model predictions

• 𝑣 𝑆; 𝑋, 𝑓 = 𝔼 𝑓 𝑥 , 𝑋 | ,  marginal game explores the model



ML Interpretability

Fun Example (Marginal Shapley ℎ[𝑣] = 𝜑[𝑣])



Fairness Interpretability

Definition (basic bias explanations)

• Given an explainer 𝐸 𝑋; 𝑓 of predictor 𝑋 , the bias explanation is defined via the transport cost

𝛽 𝑓 𝑋, 𝐺 = 𝑊 𝐸 (𝑋) 𝐺 = 0, 𝐸 (𝑋) 𝐺 = 1

• Positive and negative bias explanations 𝛽± are defined as transport effort in favorable and non-favorable 

directions.

Notes

• Type of ML explainers matters (marginal vs conditional)

• Some ML explainers isolate the effect of each predictor and some not (local vs global)



Fairness Interpretability

Example: bias explanations based on marginal Shapley values

𝜇 = 5, 𝑎 = 10, −4,16,1, −3

𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 0.5 + 𝐺  
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1  
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1 − 0.5𝐺
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1 − 0.75𝐺

𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑓 𝑋 , 𝑓 𝑋 = 𝜎 ∑𝑋 − 24.5



Fairness Interpretability

Example (offsetting)

𝑋 ∼ 𝒩 𝜇, 1 + 𝐺 , 𝑋 ∼ 𝒩(𝜇, 1 + 𝐺)
𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑓 𝑋 ), 𝑓 𝑋 = 𝜎(2𝜇 − 𝑋 − 𝑋 )

Notes
• Bias explanations are the same
• Bias predictor interactions

𝑋 ∼ 𝒩 𝜇, 2 − 𝐺 , 𝑋 ∼ 𝒩(𝜇, 1 + 𝐺)
𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑓 𝑋 ), 𝑓 𝑋 = 𝜎(2𝜇 − 𝑋 − 𝑋 )



Fairness Interpretability

• Basic bias explanations are not additive

• Cannot handle bias interactions when mixed bias predictors are present or predictors interact

• No tracking of how mass is transported



Fairness Interpretability

• Basic bias explanations are not additive

• Cannot handle bias interactions when mixed bias predictors are present or predictors interact

• No tracking of how mass is transported

Game theoretical approach

• Consider an ML explainer 𝐸 (𝑋; 𝑓) of predictor 𝑋 , 𝑆 ⊂ {1,2, … 𝑛}

• Predictors 𝑋 ∈  are players that push/pull explainer subpopulation distributions apart when joining a coalition 𝑆 ⊂ 𝑁 

• A game 𝑣 𝑆 = 𝑊 𝐸 (𝑋) 𝐺 = 0, 𝐸 (𝑋) 𝐺 = 1  

• Shapley bias explanations 𝜑 𝑓 𝑋, 𝐺 = 𝜑[𝑣 ]



Fairness Interpretability

Example (marginal Shapley-bias explanations)

𝜇 = 5, 𝑎 = 10, −4,16,1, −3

𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 0.5 + 𝐺  
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1  
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1 − 0.5𝐺
𝑋 ∼ 𝒩 𝜇 − 𝑎 1 − 𝐺 , 1 − 0.75𝐺

𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑓 𝑋 , 𝑓 𝑋 = 𝜎 ∑𝑋 − 24.5

𝜑[𝑣 ±(⋅, 𝜑[𝑣 ])] 𝜑[𝑣 (⋅, 𝜑[𝑣 ])]



On stability of bias explanations

• Conditional bias explanations are consistent with the data; computational complexity might be infeasible under dependencies in 𝑋.

• Marginal bias explanations are consistent with the structure of the model 𝑓(𝑥), complexity 𝑂(2 )

Lemma (stability [Miroshnikov et al 2021a])

The conditional and marginal Shapley-bias explanations have the following properties:

i. | 𝜑 ± 𝑓 𝐺, 𝜑 𝑣 − 𝜑 ± 𝑓 𝑔, 𝜑 𝑣  | ≤ 𝐶 𝑓 − 𝑔

ii. |𝜑 ± 𝑓 𝐺, 𝜑 𝑣 − 𝜑 ± 𝑓 𝑔, 𝜑 𝑣 | ≤ 𝐶 𝑓 − 𝑔 ( ), 𝑃 = ∑ 𝑃 ⊗ 𝑃⊂



On stability of bias explanations

• Conditional bias explanations are consistent with the data; computational complexity might be infeasible under dependencies in 𝑋

• Marginal bias explanations are consistent with the structure of the model 𝑓(𝑥), complexity 𝑂(2 )

Lemma (stability [Miroshnikov et al 2021a])

The conditional and marginal Shapley-bias explanations have the following properties:

i. |𝜑 ± 𝑓 𝐺, 𝜑 𝑣 − 𝜑 ± 𝑓 𝑔, 𝜑 𝑣 | ≤ 𝐶 𝑓 − 𝑔

ii. |𝜑 ± 𝑓 𝐺, 𝜑 𝑣 − 𝜑 ± 𝑓 𝑔, 𝜑 𝑣 | ≤ 𝐶 𝑓 − 𝑔 ( ), 𝑃 = ∑ 𝑃 ⊗ 𝑃⊂

Notes (Miroshnikov et al, 2021b, arXiv:2102.10878) : 
• For marginal Shapley-bias explanations continuity in 𝐿 (𝑃 ) in general breaks down under dependencies in 𝑋
• Marginal and conditional points of view can be unified via grouping and stability in 𝐿 (𝑃 ) is guaranteed
• Complexity can be reduced via quotient games and recursive approach



Acknowledgements

• Steve Dickerson (SVP, Chief Data Science Officer, Decision Management, Discover)

• Raghu Kulkarni (VP, Data Science, Discover) 

• Melanie Wiwczaroski (Sr. Director, Enterprise Fair Banking, Discover)

• Patrick Haggerty (Director & Senior Counsel, Discover)

• Kate Prochaska (Sr. Counsel & Director, Regulatory Policy, Discover)

• Markos Katsoulakis (Full Professor, University of Massachusetts Amherst)

• Robin Young (Full Professor, University of Massachusetts Amherst)

• Matthias Steinrücken (Assistant Professor, University of Chicago)


